BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1369061)

  • 1. Inhibition of Achromobacter protease I by lysinal derivatives.
    Masaki T; Tanaka T; Tsunasawa S; Sakiyama F; Soejima M
    Biosci Biotechnol Biochem; 1992 Oct; 56(10):1604-7. PubMed ID: 1369061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray diffraction analysis of two lysinal derivatives of Achromobacter protease I.
    Oda Y; Kitagawa Y; Yamaguchi H; Matsuura Y; Katsube Y; Masaki T; Tanaka T; Matsuura S; Norioka S; Sakiyama F
    Acta Crystallogr D Biol Crystallogr; 1996 Sep; 52(Pt 5):1027-9. PubMed ID: 15299616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a dehydroalanine-containing peptide as an efficient inhibitor of tripeptidyl peptidase II.
    Tomkinson B; Grehn L; Fransson B; Zetterqvist O
    Arch Biochem Biophys; 1994 Nov; 314(2):276-9. PubMed ID: 7979365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and kinetic studies of diphenyl 1-(N-peptidylamino)alkanephosphonate esters and their biotinylated derivatives as inhibitors of serine proteases and probes for lymphocyte granzymes.
    Abuelyaman AS; Jackson DS; Hudig D; Woodard SL; Powers JC
    Arch Biochem Biophys; 1997 Aug; 344(2):271-80. PubMed ID: 9264539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of epsilon-amino group of lysyl peptides by bovine serum amine oxidase.
    Oda O; Manabe T; Okuyama T
    J Biochem; 1981 Apr; 89(4):1317-23. PubMed ID: 6788757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone.
    McCormack TA; Cruikshank AA; Grenier L; Melandri FD; Nunes SL; Plamondon L; Stein RL; Dick LR
    Biochemistry; 1998 May; 37(21):7792-800. PubMed ID: 9601040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of di- and tripeptidyl aldehydes on calpains and cathepsins.
    Sasaki T; Kishi M; Saito M; Tanaka T; Higuchi N; Kominami E; Katunuma N; Murachi T
    J Enzyme Inhib; 1990; 3(3):195-201. PubMed ID: 2079636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of an imidazole-indole stack to high catalytic potency of a lysine-specific serine protease, Achromobacter protease I.
    Shiraki K; Norioka S; Li S; Sakiyama F
    J Biochem; 2002 Feb; 131(2):213-8. PubMed ID: 11820934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide inhibitors of West Nile NS3 protease: SAR study of tetrapeptide aldehyde inhibitors.
    Knox JE; Ma NL; Yin Z; Patel SJ; Wang WL; Chan WL; Ranga Rao KR; Wang G; Ngew X; Patel V; Beer D; Lim SP; Vasudevan SG; Keller TH
    J Med Chem; 2006 Nov; 49(22):6585-90. PubMed ID: 17064076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease.
    Tsunasawa S; Masaki T; Hirose M; Soejima M; Sakiyama F
    J Biol Chem; 1989 Mar; 264(7):3832-9. PubMed ID: 2492988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition studies of some serine and thiol proteinases by new leupeptin analogues.
    McConnell RM; York JL; Frizzell D; Ezell C
    J Med Chem; 1993 Apr; 36(8):1084-9. PubMed ID: 8478905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant effects of Z-Gln-Val-Val-OME, common sequences of thiol proteinase inhibitors on thiol proteinases.
    Teno N; Tsuboi S; Itoh N; Okamoto H; Okada Y
    Biochem Biophys Res Commun; 1987 Mar; 143(2):749-52. PubMed ID: 3566746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of matrix metalloproteinases by peptidyl hydroxamic acids.
    Odake S; Morita Y; Morikawa T; Yoshida N; Hori H; Nagai Y
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1442-6. PubMed ID: 8147888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New potent cathepsin G phosphonate inhibitors.
    Sieńczyk M; Lesner A; Wysocka M; Legowska A; Pietrusewicz E; Rolka K; Oleksyszyn J
    Bioorg Med Chem; 2008 Oct; 16(19):8863-7. PubMed ID: 18805698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and protease-catalyzed hydrolysis of a novel hydrazinopeptide.
    Amour A; Collet A; Dubar C; Reboud-Ravaux M
    Int J Pept Protein Res; 1994 Mar; 43(3):297-304. PubMed ID: 8005753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that non-caspase proteases are required for chromatin degradation during apoptosis.
    Hughes FM; Evans-Storms RB; Cidlowski JA
    Cell Death Differ; 1998 Dec; 5(12):1017-27. PubMed ID: 9894608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of S-2-aminoethylcysteinyl peptide bond by Achromobacter protease I.
    Masaki T; Takiya T; Tsunasawa S; Kuwahara S; Sakiyama F; Soejima M
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):215-6. PubMed ID: 7764517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of DNA polymerases by tripeptide derivative protease inhibitors.
    Taguchi T; Matsukage A; Ito H; Saito Y; Kawashima S
    Biochem Biophys Res Commun; 1992 Jun; 185(3):1133-40. PubMed ID: 1627135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New leupeptin analogues: synthesis and inhibition data.
    McConnell RM; Barnes GE; Hoyng CF; Gunn JM
    J Med Chem; 1990 Jan; 33(1):86-93. PubMed ID: 2136920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acids and peptides. XV. Synthesis of Gln-Val-Val-Ala-Gly and derivatives, a common sequence of thiol proteinase inhibitors and their effects on thiol proteinase.
    Teno N; Tsuboi S; Okada Y; Itoh N; Okamoto H
    Int J Pept Protein Res; 1987 Jul; 30(1):93-8. PubMed ID: 3667080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.