These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 1369063)
1. Metabolism of L-amino acids in a marine bacterium isolated from mackerel intestines in relation to eicosapentaenoic acid biosynthesis. Akimoto M; Yamagaki K; Ohtaguchi K; Koide K Biosci Biotechnol Biochem; 1992 Oct; 56(10):1640-3. PubMed ID: 1369063 [TBL] [Abstract][Full Text] [Related]
2. Production of eicosapentaenoic acid from marine bacteria. Yazawa K Lipids; 1996 Mar; 31 Suppl():S297-300. PubMed ID: 8729138 [TBL] [Abstract][Full Text] [Related]
4. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti. Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. BR-2. Lee SJ; Seo PS; Kim CH; Kwon O; Hur BK; Seo JW J Microbiol Biotechnol; 2009 Sep; 19(9):881-7. PubMed ID: 19809243 [TBL] [Abstract][Full Text] [Related]
6. Fatty acid synthesis of an eicosapentaenoic acid-producing bacterium: de novo synthesis, chain elongation, and desaturation systems. Watanabe K; Yazawa K; Kondo K; Kawaguchi A J Biochem; 1997 Aug; 122(2):467-73. PubMed ID: 9378728 [TBL] [Abstract][Full Text] [Related]
7. Labelling of eicosapentaenoic acid with stable isotope Tejerina J; Ryan J; Vyssotski M; Lagutin K; Lu Y; Visnovsky G J Microbiol Methods; 2023 Jan; 204():106633. PubMed ID: 36462663 [TBL] [Abstract][Full Text] [Related]
8. Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Nichols DS; Nichols PD; Russell NJ; Davies NW; McMeekin TA Biochim Biophys Acta; 1997 Aug; 1347(2-3):164-76. PubMed ID: 9295160 [TBL] [Abstract][Full Text] [Related]
9. A rapid method for the isolation of eicosapentaenoic acid-producing marine bacteria. Ryan J; Farr H; Visnovsky S; Vyssotski M; Visnovsky G J Microbiol Methods; 2010 Jul; 82(1):49-53. PubMed ID: 20398706 [TBL] [Abstract][Full Text] [Related]
10. Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735. Ringø E; Stenberg E; Strøm AR Appl Environ Microbiol; 1984 May; 47(5):1084-9. PubMed ID: 6742826 [TBL] [Abstract][Full Text] [Related]
11. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids. Maaheimo H; Fiaux J; Cakar ZP; Bailey JE; Sauer U; Szyperski T Eur J Biochem; 2001 Apr; 268(8):2464-79. PubMed ID: 11298766 [TBL] [Abstract][Full Text] [Related]
12. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Yu R; Yamada A; Watanabe K; Yazawa K; Takeyama H; Matsunaga T; Kurane R Lipids; 2000 Oct; 35(10):1061-4. PubMed ID: 11104010 [TBL] [Abstract][Full Text] [Related]
13. Substrate uptake and utilization by a marine ultramicrobacterium. Schut F; Jansen M; Gomes TM; Gottschal JC; Harder W; Prins RA Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():351-61. PubMed ID: 7704265 [TBL] [Abstract][Full Text] [Related]
14. Pulmonary fatty acid synthesis. II. Amino acids as fatty acid precursors in rat lung. Scholz RW; Evans RM Am J Physiol; 1977 Apr; 232(4):E364-9. PubMed ID: 851180 [TBL] [Abstract][Full Text] [Related]
15. Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Potrykus J; White RL; Bearne SL Proteomics; 2008 Jul; 8(13):2691-703. PubMed ID: 18546150 [TBL] [Abstract][Full Text] [Related]
16. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm. Martin BR; Denton RM Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782 [TBL] [Abstract][Full Text] [Related]
19. An analysis of intermediary metabolism and its control in a fat-synthesizing yeast (Candida 107) growing on glucose or alkanes. Whitworth DA; Ratledge C J Gen Microbiol; 1975 Jun; 88(2):275-88. PubMed ID: 239092 [TBL] [Abstract][Full Text] [Related]