BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 13690905)

  • 1. Electron microscopic radioautography of thin sections: the Golgi zone as a site of protein concentration in pancreatic acinar cells.
    CARO LG
    J Biophys Biochem Cytol; 1961 May; 10(1):37-45. PubMed ID: 13690905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY.
    CARO LG; PALADE GE
    J Cell Biol; 1964 Mar; 20(3):473-95. PubMed ID: 14128049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules.
    Jamieson JD; Palade GE
    J Cell Biol; 1967 Aug; 34(2):597-615. PubMed ID: 6035648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SECRETION OF PROTEIN BY THE ACINAR CELLS OF THE RAT PANCREAS AS STUDIED BY ELECTRON MICROSCOPIC RADIOAUTOGRAPHY.
    VANHEYNINGEN HE
    Anat Rec; 1964 Mar; 148():485-97. PubMed ID: 14153307
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells.
    Jamieson JD; Palade GE
    J Cell Biol; 1971 Jul; 50(1):135-58. PubMed ID: 4327462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex.
    Jamieson JD; Palade GE
    J Cell Biol; 1967 Aug; 34(2):577-96. PubMed ID: 6035647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and migration of proteins in the cells of the exocrine pancreas as revealed by specific activity determination from radioautographs.
    WARSHAWSKY H; LEBLOND CP; DROZ B
    J Cell Biol; 1963 Jan; 16(1):1-24. PubMed ID: 13999005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of membrane and secretory glycoproteins by the acinar pancreatic cells as visualized by radioautography.
    Haddad A; Brasileiro IL
    Cell Tissue Res; 1983; 233(1):197-207. PubMed ID: 6616560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfated compounds in the zymogen granules of the guinea pig pancreas.
    Reggio HA; Palade GE
    J Cell Biol; 1978 May; 77(2):288-314. PubMed ID: 649653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate metabolism in pancreatic acinar cells.
    Berg NB; Young RW
    J Cell Biol; 1971 Aug; 50(2):469-83. PubMed ID: 5112646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscope studies of nuclear extrusions in pancreatic acinar cells of the rat.
    CLARK WH
    J Biophys Biochem Cytol; 1960 Apr; 7(2):345-52. PubMed ID: 13810485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensing vacuole conversion and zymogen granule discharge in pancreatic exocrine cells: metabolic studies.
    Jamieson JD; Palade GE
    J Cell Biol; 1971 Mar; 48(3):503-22. PubMed ID: 5547590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wound healing and collagen formation. V. Quantitative electron microscope radioautographic observations of proline-H3 utilization by fibroblasts.
    Ross R; Benditt EP
    J Cell Biol; 1965 Oct; 27(1):83-106. PubMed ID: 5859922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission electron microscopic investigation of the dark and light pancreatic acinar beta-cells of young-domesticated pig (Sus Suidae, Erxleben 1777).
    Elghoul M; Kandyle R; Morsy K; Abumandour MMA
    Folia Morphol (Warsz); 2022; 81(4):956-962. PubMed ID: 34642928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographical and planar distribution of Helix pomatia lectin-binding glycoconjugates in secretory granules and plasma membrane of pancreatic exocrine acinar cells of the rat: demonstration of membrane heterogeneity.
    Kan FW; Bendayan M
    Am J Anat; 1989; 185(2-3):165-76. PubMed ID: 2672769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. II. Observations in tissues other than liver.
    Bennett G; Kan FW; O'Shaughnessy D
    J Cell Biol; 1981 Jan; 88(1):16-28. PubMed ID: 7204485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of intracellular protein transport in the mouse exocrine pancreas induced by vinblastine.
    Erickson LE
    Cell Tissue Res; 1980; 206(1):73-81. PubMed ID: 7357596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular transport of pancreatic zymogens during caerulein supramaximal stimulation.
    Saito I; Hashimoto S; Saluja A; Steer ML; Meldolesi J
    Am J Physiol; 1987 Oct; 253(4 Pt 1):G517-26. PubMed ID: 3661711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioautographic localization of the increased synthesis of phosphatidylinositol in response to pancreozymin or acetylcholine in guinea pig pancreas slices.
    Hokin LE; Huebner D
    J Cell Biol; 1967 Jun; 33(3):521-30. PubMed ID: 4292091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular changes due to neutral red as revealed in the pancreas and kidney of the mouse by the electron microscope.
    WEISS JM
    J Exp Med; 1955 Feb; 101(2):213-24. PubMed ID: 13233447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.