These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Dechlorination of 2,3,5,6-tetrachlorobiphenyl by a phototrophic enrichment culture. Montgomery L; Vogel TM FEMS Microbiol Lett; 1992 Jul; 73(3):247-50. PubMed ID: 1426987 [TBL] [Abstract][Full Text] [Related]
26. The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Harrison FH; Harwood CS Microbiology (Reading); 2005 Mar; 151(Pt 3):727-736. PubMed ID: 15758219 [TBL] [Abstract][Full Text] [Related]
27. Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. Merkel SM; Eberhard AE; Gibson J; Harwood CS J Bacteriol; 1989 Jan; 171(1):1-7. PubMed ID: 2914844 [TBL] [Abstract][Full Text] [Related]
28. Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris. Austin S; Kontur WS; Ulbrich A; Oshlag JZ; Zhang W; Higbee A; Zhang Y; Coon JJ; Hodge DB; Donohue TJ; Noguera DR Environ Sci Technol; 2015 Jul; 49(14):8914-22. PubMed ID: 26121369 [TBL] [Abstract][Full Text] [Related]
29. Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris. Gibson KJ; Gibson J Appl Environ Microbiol; 1992 Feb; 58(2):696-8. PubMed ID: 1610191 [TBL] [Abstract][Full Text] [Related]
30. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria]. Gürgün V; Kirchner G; Pfennig N Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621 [TBL] [Abstract][Full Text] [Related]
31. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris. Kanno N; Matsuura K; Haruta S Microbes Environ; 2018 Mar; 33(1):83-88. PubMed ID: 29540639 [TBL] [Abstract][Full Text] [Related]
32. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. Tec-Campos D; Posadas C; Tibocha-Bonilla JD; Thiruppathy D; Glonek N; Zuñiga C; Zepeda A; Zengler K PLoS Comput Biol; 2023 Aug; 19(8):e1011371. PubMed ID: 37556472 [TBL] [Abstract][Full Text] [Related]
33. Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris. Naito T; Sachuronggui ; Ueki M; Maeda I Biosci Biotechnol Biochem; 2016; 80(2):407-13. PubMed ID: 26376718 [TBL] [Abstract][Full Text] [Related]
34. Electricity generation by Rhodopseudomonas palustris DX-1. Xing D; Zuo Y; Cheng S; Regan JM; Logan BE Environ Sci Technol; 2008 Jun; 42(11):4146-51. PubMed ID: 18589979 [TBL] [Abstract][Full Text] [Related]
35. A polymorphism in the oxygen-responsive repressor PpsR2 confers a growth advantage to Rhodopseudomonas palustris under low light. Fixen KR; Harwood CS Photosynth Res; 2016 Aug; 129(2):199-204. PubMed ID: 27344652 [TBL] [Abstract][Full Text] [Related]
36. Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. Geissler JF; Harwood CS; Gibson J J Bacteriol; 1988 Apr; 170(4):1709-14. PubMed ID: 3350788 [TBL] [Abstract][Full Text] [Related]
37. Small-Molecule Acetylation Controls the Degradation of Benzoate and Photosynthesis in Rhodopseudomonas palustris. VanDrisse CM; Escalante-Semerena JC mBio; 2018 Oct; 9(5):. PubMed ID: 30327443 [TBL] [Abstract][Full Text] [Related]
38. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Egland PG; Pelletier DA; Dispensa M; Gibson J; Harwood CS Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6484-9. PubMed ID: 9177244 [TBL] [Abstract][Full Text] [Related]
39. Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production. Hu CW; Lin MH; Huang HC; Ku WC; Yi TH; Tsai CF; Chen YJ; Sugiyama N; Ishihama Y; Juan HF; Wu SH J Proteome Res; 2012 Nov; 11(11):5362-75. PubMed ID: 23030682 [TBL] [Abstract][Full Text] [Related]
40. The CouPSTU and TarPQM transporters in Rhodopseudomonas palustris: redundant, promiscuous uptake systems for lignin-derived aromatic substrates. Salmon RC; Cliff MJ; Rafferty JB; Kelly DJ PLoS One; 2013; 8(3):e59844. PubMed ID: 23555803 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]