These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1369282)
1. Improved production of heterologous protein from Streptomyces lividans. Payne GF; DelaCruz N; Coppella SJ Appl Microbiol Biotechnol; 1990 Jul; 33(4):395-400. PubMed ID: 1369282 [TBL] [Abstract][Full Text] [Related]
2. Bioprocess development to improve foreign protein production from recombinant Streptomyces. DelaCruz N; Payne GF; Smith JM; Coppella SJ Biotechnol Prog; 1992; 8(4):307-15. PubMed ID: 1369392 [TBL] [Abstract][Full Text] [Related]
3. Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor. Desai RP; Leaf T; Woo E; Licari P J Ind Microbiol Biotechnol; 2002 May; 28(5):297-301. PubMed ID: 11986935 [TBL] [Abstract][Full Text] [Related]
4. Genetic and biochemical evidence for the lack of significant hydrolysis of soman by a Flavobacterium parathion hydrolase. Pogell BM; Rowland SS; Steinmann KE; Speedie MK; Hoskin FC Appl Environ Microbiol; 1991 Feb; 57(2):610-1. PubMed ID: 1849715 [TBL] [Abstract][Full Text] [Related]
5. The effect of signal sequences on the efficiency of secretion of a heterologous phosphotriesterase by Streptomyces lividans. Rowland SS; Zulty JJ; Sathyamoorthy M; Pogell BM; Speedie MK Appl Microbiol Biotechnol; 1992 Oct; 38(1):94-100. PubMed ID: 1369409 [TBL] [Abstract][Full Text] [Related]
6. A comparison of the process issues in expressing the same recombinant enzyme periplasmically in Escherichia coli and extracellularly in Streptomyces lividans. Pierce JJ; Robinson SC; Ward JM; Keshavarz-Moore E; Dunnill P J Biotechnol; 2002 Jan; 92(3):205-15. PubMed ID: 11689245 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans. Rowland SS; Speedie MK; Pogell BM Appl Environ Microbiol; 1991 Feb; 57(2):440-4. PubMed ID: 1849713 [TBL] [Abstract][Full Text] [Related]
8. Importance of growth form on production of hybrid antibiotic by Streptomyces lividans TK21 by fed-batch and continuous fermentation. Sarrà M; Pérez-Pons JA; Gòdia F; Casas Alvero C Appl Biochem Biotechnol; 1998; 75(2-3):235-48. PubMed ID: 10230022 [TBL] [Abstract][Full Text] [Related]
10. Fed-batch production of thermomonospora fusca endoglucanase by recombinant streptomyces lividans. Kim E; Shin DH; Irwin DC; Wilson DB Biotechnol Bioeng; 1998 Oct; 60(1):70-6. PubMed ID: 10099407 [TBL] [Abstract][Full Text] [Related]
11. Heterologous production of daptomycin in Streptomyces lividans. Penn J; Li X; Whiting A; Latif M; Gibson T; Silva CJ; Brian P; Davies J; Miao V; Wrigley SK; Baltz RH J Ind Microbiol Biotechnol; 2006 Feb; 33(2):121-8. PubMed ID: 16261359 [TBL] [Abstract][Full Text] [Related]
12. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster. Kasuga K; Sasaki A; Matsuo T; Yamamoto C; Minato Y; Kuwahara N; Fujii C; Kobayashi M; Agematu H; Tamura T; Komatsu M; Ishikawa J; Ikeda H; Kojima I Appl Microbiol Biotechnol; 2017 May; 101(10):4259-4268. PubMed ID: 28243709 [TBL] [Abstract][Full Text] [Related]
13. Over-expression system for secretory phospholipase D by Streptomyces lividans. Ogino C; Kanemasu M; Hayashi Y; Kondo A; Shimizu N; Tokuyama S; Tahara Y; Kuroda S; Tanizawa K; Fukuda H Appl Microbiol Biotechnol; 2004 Jun; 64(6):823-8. PubMed ID: 14740197 [TBL] [Abstract][Full Text] [Related]
14. Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans. Pimienta E; Ayala JC; Rodríguez C; Ramos A; Van Mellaert L; Vallín C; Anné J Microb Cell Fact; 2007 Jul; 6():20. PubMed ID: 17610745 [TBL] [Abstract][Full Text] [Related]
15. Production of extracellular protease by Streptomyces fradiae. Ellaiah P; Srinivasulu B Hindustan Antibiot Bull; 1996; 38(1-4):41-7. PubMed ID: 9676044 [TBL] [Abstract][Full Text] [Related]
16. Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations. D'Huys PJ; Lule I; Van Hove S; Vercammen D; Wouters C; Bernaerts K; Anné J; Van Impe JF J Biotechnol; 2011 Apr; 152(4):132-43. PubMed ID: 20797416 [TBL] [Abstract][Full Text] [Related]
17. Streptomyces as Overexpression System for Heterologous Production of an Antimicrobial Peptide. Roldán-Tapia M; Anné J; Reyes AG; Carrasco U; Millán-Pacheco C; Barrios-González J; Mejía A Protein Pept Lett; 2017; 24(6):483-488. PubMed ID: 28183247 [TBL] [Abstract][Full Text] [Related]
18. Protein secretion biotechnology using Streptomyces lividans: large-scale production of functional trimeric tumor necrosis factor alpha. Pozidis C; Lammertyn E; Politou AS; Anné J; Tsiftsoglou AS; Sianidis G; Economou A Biotechnol Bioeng; 2001 Mar; 72(6):611-9. PubMed ID: 11460252 [TBL] [Abstract][Full Text] [Related]
19. Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Li S; Li F; Chen XS; Wang L; Xu J; Tang L; Mao ZG Appl Biochem Biotechnol; 2012 Jan; 166(2):414-23. PubMed ID: 22083395 [TBL] [Abstract][Full Text] [Related]
20. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Philip P; Kern D; Goldmanns J; Seiler F; Schulte A; Habicher T; Büchs J Microb Cell Fact; 2018 May; 17(1):69. PubMed ID: 29743073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]