These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 1369477)
1. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bebbington CR; Renner G; Thomson S; King D; Abrams D; Yarranton GT Biotechnology (N Y); 1992 Feb; 10(2):169-75. PubMed ID: 1369477 [TBL] [Abstract][Full Text] [Related]
2. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. de la Cruz Edmonds MC; Tellers M; Chan C; Salmon P; Robinson DK; Markusen J Mol Biotechnol; 2006 Oct; 34(2):179-90. PubMed ID: 17172663 [TBL] [Abstract][Full Text] [Related]
3. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis. Feary M; Racher AJ; Young RJ; Smales CM Biotechnol Prog; 2017 Jan; 33(1):17-25. PubMed ID: 27689785 [TBL] [Abstract][Full Text] [Related]
4. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance. Yu DY; Noh SM; Lee GM J Biotechnol; 2016 Aug; 231():136-140. PubMed ID: 27288593 [TBL] [Abstract][Full Text] [Related]
5. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
6. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
7. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
8. Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Jun SC; Kim MS; Hong HJ; Lee GM Biotechnol Prog; 2006; 22(3):770-80. PubMed ID: 16739961 [TBL] [Abstract][Full Text] [Related]
9. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Sacco SA; Tuckowski AM; Trenary I; Kraft L; Betenbaugh MJ; Young JD; Smith KD Biotechnol Bioeng; 2022 Jul; 119(7):1712-1727. PubMed ID: 35312045 [TBL] [Abstract][Full Text] [Related]
10. Gene amplification: the Chinese hamster glutamine synthetase gene. Sanders PG; Hussein A; Coggins L; Wilson R Dev Biol Stand; 1987; 66():55-63. PubMed ID: 2884156 [TBL] [Abstract][Full Text] [Related]
11. Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker. Pu H; Cashion LM; Kretschmer PJ; Liu Z Mol Biotechnol; 1998 Aug; 10(1):17-25. PubMed ID: 9779420 [TBL] [Abstract][Full Text] [Related]
12. Comparison of expression of a humanized monoclonal antibody in mouse NSO myeloma cells and Chinese hamster ovary cells. Peakman TC; Worden J; Harris RH; Cooper H; Tite J; Page MJ; Gewert DR; Bartholemew M; Crowe JS; Brett S Hum Antibodies Hybridomas; 1994; 5(1-2):65-74. PubMed ID: 7532024 [TBL] [Abstract][Full Text] [Related]
14. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Cockett MI; Bebbington CR; Yarranton GT Biotechnology (N Y); 1990 Jul; 8(7):662-7. PubMed ID: 1369995 [TBL] [Abstract][Full Text] [Related]
15. An attempt to add biological functions by genetic engineering in order to produce high-performance bioreactor cells for hybrid artificial liver: transfection of glutamine synthetase into Chinese hamster ovary (CHO) cell. Enosawa S; Suzuki S; Fujino M; Amemiya H; Omasa T; Urayama S; Tanimura N; Suga K Cell Transplant; 1997; 6(5):537-40. PubMed ID: 9331509 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Noh SM; Shin S; Lee GM Sci Rep; 2018 Mar; 8(1):5361. PubMed ID: 29599455 [TBL] [Abstract][Full Text] [Related]
17. Supplementation of Nucleosides During Selection can Reduce Sequence Variant Levels in CHO Cells Using GS/MSX Selection System. Tang D; Lam C; Louie S; Hoi KH; Shaw D; Yim M; Snedecor B; Misaghi S Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28745430 [TBL] [Abstract][Full Text] [Related]
18. Selecting and designing cell lines for improved physiological characteristics. Birch JR; Boraston RC; Metcalfe H; Brown ME; Bebbington CR; Field RP Cytotechnology; 1994; 15(1-3):11-6. PubMed ID: 7765922 [TBL] [Abstract][Full Text] [Related]
19. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies. Yu DY; Lee SY; Lee GM Biotechnol Bioeng; 2018 May; 115(5):1367-1372. PubMed ID: 29359789 [TBL] [Abstract][Full Text] [Related]
20. Enhancing CHO cell productivity through a dual selection system using Aspg and Gs in glutamine free medium. Ha TK; Òdena A; Karottki KJC; Kim CL; Hefzi H; Lee GM; Faustrup Kildegaard H; Nielsen LK; Grav LM; Lewis NE Biotechnol Bioeng; 2023 Apr; 120(4):1159-1166. PubMed ID: 36562657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]