These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 136953)
1. [Na-K-ATPase activity in the normal aging crystalline lens and in senile cataract]. Nordmann J; Klethi J Arch Ophtalmol (Paris); 1976; 36(6-7):523-8. PubMed ID: 136953 [TBL] [Abstract][Full Text] [Related]
2. Na,K-ATPase in simulated eye bank and cryoextracted rabbit lenses, and human eye bank lenses and cataracts. Paterson CA; Delamere NA; Mawhorter L; Cuizon JV Invest Ophthalmol Vis Sci; 1983 Nov; 24(11):1534-8. PubMed ID: 6139352 [TBL] [Abstract][Full Text] [Related]
3. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts. Yan H; Lou MF; Fernando MR; Harding JJ Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401 [TBL] [Abstract][Full Text] [Related]
4. Expression, regulation and function of Na,K-ATPase in the lens. Delamere NA; Tamiya S Prog Retin Eye Res; 2004 Nov; 23(6):593-615. PubMed ID: 15388076 [TBL] [Abstract][Full Text] [Related]
5. Sodium-potassium-dependent ATPase. I. Cytochemical localization in normal and cataractous rat lenses. Unakar NJ; Tsui JY Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):630-41. PubMed ID: 6247293 [TBL] [Abstract][Full Text] [Related]
6. Na,K-ATPase polypeptide upregulation responses in lens epithelium. Delamere NA; Manning RE; Liu L; Moseley AE; Dean WL Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):763-8. PubMed ID: 9538883 [TBL] [Abstract][Full Text] [Related]
7. Altered Na,K-ATPase pattern in gamma-crystallin mutant mice. Moseley A; Graw J; Delamere NA Invest Ophthalmol Vis Sci; 2002 May; 43(5):1517-9. PubMed ID: 11980868 [TBL] [Abstract][Full Text] [Related]
8. Fatty acid cytotoxicity to bovine lens epithelial cells: investigations on cell viability, ecto-ATPase, Na(+), K(+)-ATPase and intracellular sodium concentrations. Nguyen N; Glanz D; Glaesser D Exp Eye Res; 2000 Oct; 71(4):405-13. PubMed ID: 10995561 [TBL] [Abstract][Full Text] [Related]
9. The Na-K-ATPase in relation to the Na, K and taurine levels in the senile cataract. Auricchio G; Rinaldi E; Savastano S; Albini L; Curto A; Landolfo V Metab Pediatr Ophthalmol; 1980; 4(1):15-7. PubMed ID: 6255263 [No Abstract] [Full Text] [Related]
10. A study of adenosine triphosphatase activity in human normal, immature, mature and hypermature cataractous lenses. Sharma GK; Mathur SS; Kabra SG; Malik VK Indian J Ophthalmol; 1983; 31 Suppl():882-3. PubMed ID: 6152694 [No Abstract] [Full Text] [Related]
11. Na,K-ATPases of the lens epithelium and fiber cell: formation of catalytic cycle intermediates and Na+: K+ exchange. Garner MH Exp Eye Res; 1994 Jun; 58(6):705-18. PubMed ID: 7925710 [TBL] [Abstract][Full Text] [Related]
12. Zinc-desferrioxamine reduces damage to lenses exposed to hyperbaric oxygen and has an ameliorative effect on catalase and Na, K-ATPase activities. Schaal S; Beiran I; Bormusov E; Chevion M; Dovrat A Exp Eye Res; 2007 Mar; 84(3):455-63. PubMed ID: 17174302 [TBL] [Abstract][Full Text] [Related]
13. H2O2-modification of Na,K-ATPase. Alterations in external Na+ and K+ stimulation of K+ influx. Garner MH; Garner WH; Spector A Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):103-7. PubMed ID: 3000974 [TBL] [Abstract][Full Text] [Related]
14. [Studies of human senile cataract: changes in some glycolytic enzymes and adenosine triphosphate]. Maraini G; Carta F; Santori M Ann Ottalmol Clin Ocul; 1966 Jul; 92(7):482-9. PubMed ID: 4230675 [No Abstract] [Full Text] [Related]
15. Mechanism of "hypoglycemic" cataract formation in the rat lens. I. The role of hexokinase instability. Chylack LT Invest Ophthalmol; 1975 Oct; 14(10):746-55. PubMed ID: 1184308 [TBL] [Abstract][Full Text] [Related]
16. [Biological parameters of so-called "senile cataracts"]. Pau H Fortschr Ophthalmol; 1989; 86(3):197-9. PubMed ID: 2759531 [TBL] [Abstract][Full Text] [Related]
17. Adenosine triphosphatase (ATPase) activity of human cataractous lenses. Gupta AK; Ghosh B; Grover AK; Sarin GS Indian J Ophthalmol; 1986; 34():148-51. PubMed ID: 2856494 [No Abstract] [Full Text] [Related]
18. [Aging of the human lens and pathogenesis of senile cataract]. Nordmann J Adv Ophthalmol; 1977; 34():1-73. PubMed ID: 141198 [No Abstract] [Full Text] [Related]
19. Transglutaminase activity in normal human lenses and in senile cataracts. Hidasi V; Muszbek L Ann Clin Lab Sci; 1995; 25(3):236-40. PubMed ID: 7605105 [TBL] [Abstract][Full Text] [Related]
20. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase. Yan H; Harding JJ; Xing K; Lou MF Curr Eye Res; 2007 May; 32(5):455-63. PubMed ID: 17514531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]