BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1370003)

  • 21. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots.
    Binder BY; Peebles CA; Shanks JV; San KY
    Biotechnol Prog; 2009; 25(3):861-5. PubMed ID: 19479674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of tabersonine in cell suspension cultures of Catharanthus roseus.
    Furuya T; Sakamoto K; Iida K; Asada Y; Yoshikawa T; Sakai S; Aimi N
    Phytochemistry; 1992 Sep; 31(9):3065-8. PubMed ID: 1368411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells.
    Papon N; Bremer J; Vansiri A; Andreu F; Rideau M; Crèche J
    Planta Med; 2005 Jun; 71(6):572-4. PubMed ID: 15971133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots.
    Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI
    J Biotechnol; 2006 Mar; 122(1):28-38. PubMed ID: 16188339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit.
    Jaleel CA; Manivannan P; Kishorekumar A; Sankar B; Gopi R; Somasundaram R; Panneerselvam R
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):150-7. PubMed ID: 17560094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the octadecanoid pathway in the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots under normal and UV-B stress conditions.
    Peebles CA; Shanks JV; San KY
    Biotechnol Bioeng; 2009 Aug; 103(6):1248-54. PubMed ID: 19437555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria.
    Martino PD; Fursy R; Bret L; Sundararaju B; Phillips RS
    Can J Microbiol; 2003 Jul; 49(7):443-9. PubMed ID: 14569285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient studies of light-adapted cultures of hairy roots of Catharanthus roseus: growth and indole alkaloid accumulation.
    Bhadra R; Morgan JA; Shanks JV
    Biotechnol Bioeng; 1998 Dec; 60(6):670-8. PubMed ID: 10099477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fosmidomycin analogues as inhibitors of monoterpenoid indole alkaloid production in Catharanthus roseus cells.
    Mincheva Z; Courtois M; Andreu F; Rideau M; Viaud-Massuard MC
    Phytochemistry; 2005 Aug; 66(15):1797-803. PubMed ID: 16054176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments.
    Clark ME; Edelmann RE; Duley ML; Wall JD; Fields MW
    Environ Microbiol; 2007 Nov; 9(11):2844-54. PubMed ID: 17922767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein expression in Escherichia coli S17-1 biofilms: impact of indole.
    Collet A; Vilain S; Cosette P; Junter GA; Jouenne T; Phillips RS; Di Martino P
    Antonie Van Leeuwenhoek; 2007 Jan; 91(1):71-85. PubMed ID: 17021938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Production of indole alkaloids in tissue cultures of Catharanthus roseus (author's transl)].
    Döller G; Alfermann AW; Reinhard E
    Planta Med; 1976 Aug; 30(1):14-20. PubMed ID: 959385
    [No Abstract]   [Full Text] [Related]  

  • 33. Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations.
    Favali MA; Musetti R; Benvenuti S; Bianchi A; Pressacco L
    Protoplasma; 2004 Mar; 223(1):45-51. PubMed ID: 15004742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation.
    Jaleel CA; Manivannan P; Sankar B; Kishorekumar A; Gopi R; Somasundaram R; Panneerselvam R
    Colloids Surf B Biointerfaces; 2007 Oct; 60(1):110-6. PubMed ID: 17643271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quercetin-induced benzophenanthridine alkaloid production in suspension cell cultures of Sanguinaria canadensis.
    Mahady GB; Beecher CW
    Planta Med; 1994 Dec; 60(6):553-7. PubMed ID: 7809211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkaloid accumulation in Catharanthus roseus suspension cultures.
    Scragg AH
    Methods Mol Biol; 1999; 111():393-402. PubMed ID: 10081005
    [No Abstract]   [Full Text] [Related]  

  • 37. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.
    Rivas L; Dykes GA; Fegan N
    J Microbiol Methods; 2007 Apr; 69(1):44-51. PubMed ID: 17239460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alkaloid production in Vernonia cinerea: Callus, cell suspension and root cultures.
    Maheshwari P; Songara B; Kumar S; Jain P; Srivastava K; Kumar A
    Biotechnol J; 2007 Aug; 2(8):1026-32. PubMed ID: 17582823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels.
    Hughes EH; Hong SB; Gibson SI; Shanks JV; San KY
    Biotechnol Bioeng; 2004 Jun; 86(6):718-27. PubMed ID: 15137084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The complexity of sound quantification of specialized metabolite biosynthesis: The stress related impact on the alkaloid content of Catharanthus roseus.
    Yahyazadeh M; Jerz G; Winterhalter P; Selmar D
    Phytochemistry; 2021 Jul; 187():112774. PubMed ID: 33930669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.