BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1370061)

  • 1. Identification of the phenotypic modulation of rabbit arterial smooth muscle cells in primary culture by flow cytometry.
    Yamamoto M; Fujita K; Shinkai T; Yamamoto K; Noumura T
    Exp Cell Res; 1992 Jan; 198(1):43-51. PubMed ID: 1370061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype.
    Yamamoto M; Yamamoto K; Noumura T
    Exp Cell Res; 1993 Jan; 204(1):121-9. PubMed ID: 8416790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotype modulation in primary cultures of aortic smooth muscle cells from streptozotocin-diabetic rats.
    Etienne P; Parés-Herbuté N; Mani-Ponset L; Gabrion J; Rabesandratana H; Herbuté S; Monnier L
    Differentiation; 1998 Aug; 63(4):225-36. PubMed ID: 9745713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth regulation in primary culture of rabbit arterial smooth muscle cells by platelet-derived growth factor, insulin-like growth factor-I, and epidermal growth factor.
    Yamamoto M; Yamamoto K
    Exp Cell Res; 1994 May; 212(1):62-8. PubMed ID: 8174643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern.
    Powell RJ; Cronenwett JL; Fillinger MF; Wagner RJ; Sampson LN
    Ann Vasc Surg; 1996 Jan; 10(1):4-10. PubMed ID: 8688295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retardation of phenotypic transition of rabbit arterial smooth muscle cells in three-dimensional primary culture.
    Yamamoto M; Nakamura H; Yamato M; Aoyagi M; Yamamoto K
    Exp Cell Res; 1996 May; 225(1):12-21. PubMed ID: 8635504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in osteopontin mRNA expression during phenotypic transition of rabbit arterial smooth muscle cells.
    Yamamoto M; Aoyagi M; Azuma H; Yamamoto K
    Histochem Cell Biol; 1997 Apr; 107(4):279-87. PubMed ID: 9151110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen synthesis by cultured rabbit aortic smooth-muscle cells. Alteration with phenotype.
    Ang AH; Tachas G; Campbell JH; Bateman JF; Campbell GR
    Biochem J; 1990 Jan; 265(2):461-9. PubMed ID: 1689147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells.
    Hedin U; Bottger BA; Forsberg E; Johansson S; Thyberg J
    J Cell Biol; 1988 Jul; 107(1):307-19. PubMed ID: 2455726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen synthesis by cultured arterial smooth muscle cells during spontaneous phenotypic modulation.
    Okada Y; Katsuda S; Matsui Y; Watanabe H; Nakanishi I
    Acta Pathol Jpn; 1990 Mar; 40(3):157-64. PubMed ID: 2360454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of cultured smooth muscle cells obtained from the palmar digital arteries of horses.
    Rodgerson DH; Belknap JK; Fontaine GL; Kroll DL
    Am J Vet Res; 2000 Dec; 61(12):1602-8. PubMed ID: 11131606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in elastin-binding proteins during the phenotypic transition of rabbit arterial smooth muscle cells in primary culture.
    Yamamoto K; Aoyagi M; Yamamoto M
    Exp Cell Res; 1995 May; 218(1):339-45. PubMed ID: 7737370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of arterial cells: III. Stathmokinetic analyses of smooth muscle cells cocultured with endothelial cells.
    Staiano-Coico L; Hajjar DP; Hefton JM; Hajjar KA; Kimmel M
    J Cell Physiol; 1988 Mar; 134(3):485-90. PubMed ID: 2450881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype.
    Thyberg J; Nilsson J; Palmberg L; Sjölund M
    Cell Tissue Res; 1985; 239(1):69-74. PubMed ID: 3967287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CCL5/CCR5 Axis Promotes Vascular Smooth Muscle Cell Proliferation and Atherogenic Phenotype Switching.
    Lin CS; Hsieh PS; Hwang LL; Lee YH; Tsai SH; Tu YC; Hung YW; Liu CC; Chuang YP; Liao MT; Chien S; Tsai MC
    Cell Physiol Biochem; 2018; 47(2):707-720. PubMed ID: 29794461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins.
    Worth NF; Rolfe BE; Song J; Campbell GR
    Cell Motil Cytoskeleton; 2001 Jul; 49(3):130-45. PubMed ID: 11668582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle effects of nitric oxide on vascular smooth muscle cells.
    Sarkar R; Gordon D; Stanley JC; Webb RC
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1810-8. PubMed ID: 9139967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of macrophage-derived growth factor on the cell cycle kinetics of cultured arterial smooth muscle cells].
    Qiu HM
    Zhonghua Bing Li Xue Za Zhi; 1990 Mar; 19(1):4-7. PubMed ID: 2383911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modulation of arterial smooth muscle cells in culture and cholesterol exchange].
    Bourdillon MC; Dusserre E; Covacho C; Berthezène F
    Ann Endocrinol (Paris); 1991; 52(6):464-6. PubMed ID: 1824500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADAR1-Mediated RNA Editing, A Novel Mechanism Controlling Phenotypic Modulation of Vascular Smooth Muscle Cells.
    Fei J; Cui XB; Wang JN; Dong K; Chen SY
    Circ Res; 2016 Jul; 119(3):463-9. PubMed ID: 27199464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.