These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 13700906)

  • 1. Inactivation by light of the phosphorylative activity of chloroplasts.
    FORTI G; JAGENDORF AT
    Biochim Biophys Acta; 1960 Oct; 44():34-40. PubMed ID: 13700906
    [No Abstract]   [Full Text] [Related]  

  • 2. Light inactivation of photophosphorylation by swiss-chard chloroplasts.
    AVRON M
    Biochim Biophys Acta; 1960 Oct; 44():41-8. PubMed ID: 13685298
    [No Abstract]   [Full Text] [Related]  

  • 3. Equivalence of light and adenosine triphosphate in bacterial photosynthesis.
    LOSADA M; TREBST AV; OGATA S; ARNON DI
    Nature; 1960 Jun; 186():753-60. PubMed ID: 14418349
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on photosynthetic processes. I. The effect of light intensity on triphosphopyridine nucleotide reduction, adenosine triphosphate formation, and carbon dioxide assimilation in spinach chloroplasts.
    TURNER JF; BLACK CC; GIBBS M
    J Biol Chem; 1962 Feb; 237():577-9. PubMed ID: 13923211
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis.
    Santarius KA; Heber U
    Biochim Biophys Acta; 1965 May; 102(1):39-54. PubMed ID: 5833412
    [No Abstract]   [Full Text] [Related]  

  • 6. The adenosinetriphosphate-adenosinediphosphate exchange enzyme from chloroplasts. Further purification and antigenic properties.
    KAHN JS; JAGENDORF AT
    Biochim Biophys Acta; 1962 Apr; 58():149-54. PubMed ID: 14453113
    [No Abstract]   [Full Text] [Related]  

  • 7. Photosynthetic phosphorylation.
    JAGENDORF AT
    Fed Proc; 1959 Dec; 18():974-84. PubMed ID: 14406516
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on photosynthetic processes. II. Action spectra and quantum requirement for triphosphopyridine nucleotide reduction and the formation of adenosine triphosphate by spinach chloroplasts.
    BLACK CC; TURNER JF; GIBBS M; KROGMANN DW; GORDON SA
    J Biol Chem; 1962 Feb; 237():580-3. PubMed ID: 13869646
    [No Abstract]   [Full Text] [Related]  

  • 9. 'State 3--state 4 transition' and phosphate potential in 'Class I' spinach chloroplasts.
    Kraayenhof R
    Biochim Biophys Acta; 1969 May; 180(1):213-5. PubMed ID: 5787270
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of CO2 fixation by adenosine 5'-diphosphate and the role of phosphate transport in isolated pea chloroplasts.
    Robinson SP; Wiskich JT
    Arch Biochem Biophys; 1977 Dec; 184(2):546-54. PubMed ID: 596885
    [No Abstract]   [Full Text] [Related]  

  • 11. Dinitrophenol as a catalyst of photosynthetic phosphorylation.
    WESSELS JS
    Biochim Biophys Acta; 1959 Nov; 36():264-5. PubMed ID: 13844109
    [No Abstract]   [Full Text] [Related]  

  • 12. Stoichiometry of photosynthetic phosphorylation.
    Del Campo FF; Ramírez JM; Arnon DI
    J Biol Chem; 1968 May; 243(10):2805-9. PubMed ID: 5651650
    [No Abstract]   [Full Text] [Related]  

  • 13. [Contribution to the mechanism of phosphate transport in erythrocytes].
    HILLMANN G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1962; 78():654-60. PubMed ID: 13907469
    [No Abstract]   [Full Text] [Related]  

  • 14. A light- and cysteine-activated ATP-P1 exchange reaction in chloroplasts and its relationship to ATPase and photophosphorylation.
    Rienits KG
    Biochim Biophys Acta; 1967; 143(3):595-605. PubMed ID: 4229635
    [No Abstract]   [Full Text] [Related]  

  • 15. Non-participation of oxygen in photosynthetic phosphorylation by spinach chloroplasts.
    KRALL AR; AVRON M; JAGENDORF AT
    Biochim Biophys Acta; 1957 Nov; 26(2):431-2. PubMed ID: 13499386
    [No Abstract]   [Full Text] [Related]  

  • 16. The quantum efficiency of ATP production in bacterial light-in-duced phosphorylation.
    BALTSCHEFFSKY H; BALTSCHEFFSKY M; OLSON JM
    Biochim Biophys Acta; 1961 Jun; 50():380-2. PubMed ID: 13686468
    [No Abstract]   [Full Text] [Related]  

  • 17. An enzyme from spinach chloroplasts catalyzing adenosine triphosphate-adenosine diphosphate exchange.
    KAHN JS; JAGENDORF AT
    J Biol Chem; 1961 Mar; 236():940-3. PubMed ID: 13750747
    [No Abstract]   [Full Text] [Related]  

  • 18. Dio-9, an inhibitor of coupled electron transport and phosphorylation in chloroplasts.
    McCarty RE; Guillory RJ; Racker E
    J Biol Chem; 1965 Dec; 240(12):4822-3. PubMed ID: 4221251
    [No Abstract]   [Full Text] [Related]  

  • 19. Nucleoside monophosphate kinases. I. Transphosphorylation between adenosine triphosphate and nucleoside monophosphates.
    STROMINGER JL; HEPPEL LA; MAXWELL ES
    Biochim Biophys Acta; 1959 Apr; 32():412-21. PubMed ID: 13835290
    [No Abstract]   [Full Text] [Related]  

  • 20. THE FATE OF PHOSPHATE OXYGEN IN PHOTOPHOSPHORYLATION.
    AVRON M; GRISARO V; SHARON N
    J Biol Chem; 1965 Mar; 240():1381-6. PubMed ID: 14284752
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.