These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1096 related articles for article (PubMed ID: 1370540)
1. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization. Pittaluga A; Raiteri M J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540 [TBL] [Abstract][Full Text] [Related]
2. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. II. Evidence for functional cooperation and for coexistence on the same axon terminal. Raiteri M; Garrone B; Pittaluga A J Pharmacol Exp Ther; 1992 Jan; 260(1):238-42. PubMed ID: 1370541 [TBL] [Abstract][Full Text] [Related]
3. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. III. Changes in the NMDA receptor complex induced by their functional cooperation. Pittaluga A; Raiteri M J Pharmacol Exp Ther; 1992 Oct; 263(1):327-33. PubMed ID: 1357159 [TBL] [Abstract][Full Text] [Related]
4. Glutamate agonists and [3H]GABA release from rat hippocampal slices: involvement of metabotropic glutamate receptors in the quisqualate-evoked release. Janáky R; Varga V; Saransaari P; Oja SS Neurochem Res; 1994 Jun; 19(6):729-34. PubMed ID: 7915017 [TBL] [Abstract][Full Text] [Related]
5. Presynaptic modulation of glutamate and dynorphin release by excitatory amino acids in the guinea-pig hippocampus. Gannon RL; Terrian DM Neuroscience; 1991; 41(2-3):401-10. PubMed ID: 1678499 [TBL] [Abstract][Full Text] [Related]
6. Excitatory amino acid receptors on isolated retinal ganglion cells from the goldfish. Yazejian B; Fain GL J Neurophysiol; 1992 Jan; 67(1):94-107. PubMed ID: 1372651 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Fink K; Schultheiss R; Göthert M Br J Pharmacol; 1992 May; 106(1):67-72. PubMed ID: 1380384 [TBL] [Abstract][Full Text] [Related]
9. N-methyl-D-aspartate exposure blocks glutamate toxicity in cultured cerebellar granule cells. Chuang DM; Gao XM; Paul SM Mol Pharmacol; 1992 Aug; 42(2):210-6. PubMed ID: 1355259 [TBL] [Abstract][Full Text] [Related]
10. Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord. Radhakrishnan V; Henry JL Neuroscience; 1993 Jul; 55(2):531-44. PubMed ID: 7690912 [TBL] [Abstract][Full Text] [Related]
11. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials. Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583 [TBL] [Abstract][Full Text] [Related]
12. Quisqualate-induced changes in extracellular sodium and calcium concentrations persist in the combined presence of NMDA and non-NMDA receptor antagonists in rat hippocampal slices. Mudrick LA; Heinemann U Neurosci Lett; 1990 Aug; 116(1-2):172-8. PubMed ID: 1979665 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Bertrand G; Gross R; Puech R; Loubatières-Mariani MM; Bockaert J Br J Pharmacol; 1992 Jun; 106(2):354-9. PubMed ID: 1382779 [TBL] [Abstract][Full Text] [Related]
14. Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures. Levi G; Patrizio M; Gallo V J Neurochem; 1991 Jan; 56(1):199-206. PubMed ID: 1670952 [TBL] [Abstract][Full Text] [Related]
15. GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated. Gallo V; Patrizio M; Levi G Glia; 1991; 4(3):245-55. PubMed ID: 1680100 [TBL] [Abstract][Full Text] [Related]
16. 6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. Blake JF; Yates RG; Brown MW; Collingridge GL Br J Pharmacol; 1989 May; 97(1):71-6. PubMed ID: 2566354 [TBL] [Abstract][Full Text] [Related]
17. Depression by sodium ions of calcium uptake mediated by non-N-methyl-D-aspartate receptors in cultured cerebellar neurons and correlation with evoked D-[3H]aspartate release. Gallo V; Giovannini C; Levi G J Neurochem; 1992 Feb; 58(2):406-15. PubMed ID: 1345937 [TBL] [Abstract][Full Text] [Related]
18. Electrogenic uptake contributes a major component of the depolarizing action of L-glutamate in rat hippocampal slices. Frenguelli BG; Blake JF; Brown MW; Collingridge GL Br J Pharmacol; 1991 Feb; 102(2):355-62. PubMed ID: 1673070 [TBL] [Abstract][Full Text] [Related]
19. The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells. Courtney MJ; Lambert JJ; Nicholls DG J Neurosci; 1990 Dec; 10(12):3873-9. PubMed ID: 1980131 [TBL] [Abstract][Full Text] [Related]
20. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. Luccini E; Musante V; Neri E; Raiteri M; Pittaluga A J Neurosci Res; 2007 Dec; 85(16):3657-65. PubMed ID: 17671992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]