These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Redesign of the interior hydrophilic region of mitochondrial cytochrome c by site-directed mutagenesis. Davies AM; Guillemette JG; Smith M; Greenwood C; Thurgood AG; Mauk AG; Moore GR Biochemistry; 1993 May; 32(20):5431-5. PubMed ID: 8388720 [TBL] [Abstract][Full Text] [Related]
23. Effects of mutating Asn-52 to isoleucine on the haem-linked properties of cytochrome c. Schejter A; Koshy TI; Luntz TL; Sanishvili R; Vig I; Margoliash E Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):95-101. PubMed ID: 8068029 [TBL] [Abstract][Full Text] [Related]
24. The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium(VI) to chromium(III) by cytochrome c(7). Assfalg M; Bertini I; Bruschi M; Michel C; Turano P Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9750-4. PubMed ID: 12119407 [TBL] [Abstract][Full Text] [Related]
25. Comparison of reduced and oxidized yeast iso-1-cytochrome c using proton paramagnetic shifts. Gao YA; Boyd J; Pielak GJ; Williams RJ Biochemistry; 1991 Feb; 30(7):1928-34. PubMed ID: 1847077 [TBL] [Abstract][Full Text] [Related]
26. Structural evidence for a proton transfer pathway coupled with haem reduction of cytochrome c" from Methylophilus methylotrophus. Enguita FJ; Pohl E; Turner DL; Santos H; Carrondo MA J Biol Inorg Chem; 2006 Mar; 11(2):189-96. PubMed ID: 16341897 [TBL] [Abstract][Full Text] [Related]
27. Conformational component in the coupled transfer of multiple electrons and protons in a monomeric tetraheme cytochrome. Louro RO; Bento I; Matias PM; Catarino T; Baptista AM; Soares CM; Carrondo MA; Turner DL; Xavier AV J Biol Chem; 2001 Nov; 276(47):44044-51. PubMed ID: 11551953 [TBL] [Abstract][Full Text] [Related]
28. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR. Qi PX; Beckman RA; Wand AJ Biochemistry; 1996 Sep; 35(38):12275-86. PubMed ID: 8823161 [TBL] [Abstract][Full Text] [Related]
29. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics. Baptista AM; Martel PJ; Soares CM Biophys J; 1999 Jun; 76(6):2978-98. PubMed ID: 10354425 [TBL] [Abstract][Full Text] [Related]
30. Redox linked conformational changes in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774. Paixão VB; Vis H; Turner DL Biochemistry; 2010 Nov; 49(44):9620-9. PubMed ID: 20886839 [TBL] [Abstract][Full Text] [Related]
31. Proton NMR studies of noncovalent complexes of cytochrome c peroxidase-cyanide with horse and yeast ferricytochromes c. Yi Q; Erman JE; Satterlee JD Biochemistry; 1993 Oct; 32(41):10988-94. PubMed ID: 8218164 [TBL] [Abstract][Full Text] [Related]
32. Cooperativity between electrons and protons in a monomeric cytochrome c(3): the importance of mechano-chemical coupling for energy transduction. Louro RO; Catarino T; LeGall J; Turner DL; Xavier AV Chembiochem; 2001 Nov; 2(11):831-7. PubMed ID: 11948869 [TBL] [Abstract][Full Text] [Related]
33. Proton NMR comparison of noncovalent and covalently cross-linked complexes of cytochrome c peroxidase with horse, tuna, and yeast ferricytochromes c. Moench SJ; Chroni S; Lou BS; Erman JE; Satterlee JD Biochemistry; 1992 Apr; 31(14):3661-70. PubMed ID: 1314646 [TBL] [Abstract][Full Text] [Related]
34. Change in charge of an unvaried heme contact residue does not cause a major change of conformation in cytochrome c. Thurgood AG; Pielak GJ; Cutler RL; Davies AM; Greenwood C; Mauk AG; Smith M; Williamson DJ; Moore GR FEBS Lett; 1991 Jun; 284(2):173-7. PubMed ID: 1647980 [TBL] [Abstract][Full Text] [Related]
35. Structure of zinc-substituted cytochrome c: nuclear magnetic resonance and optical spectroscopic studies. Anni H; Vanderkooi JM; Mayne L Biochemistry; 1995 May; 34(17):5744-53. PubMed ID: 7727435 [TBL] [Abstract][Full Text] [Related]
36. Effect of hydrogen-bond networks in controlling reduction potentials in Desulfovibrio vulgaris (Hildenborough) cytochrome C3 probed by site-specific mutagenesis. Salgueiro CA; da Costa PN; Turner DL; Messias AC; van Dongen WM; Saraiva LM; Xavier AV Biochemistry; 2001 Aug; 40(32):9709-16. PubMed ID: 11583171 [TBL] [Abstract][Full Text] [Related]
37. Characterization of an alkaline transition intermediate stabilized in the Phe82Trp variant of yeast iso-1-cytochrome c. Rosell FI; Harris TR; Hildebrand DP; Döpner S; Hildebrandt P; Mauk AG Biochemistry; 2000 Aug; 39(30):9047-54. PubMed ID: 10913318 [TBL] [Abstract][Full Text] [Related]
38. A proton-NMR investigation of the fully reduced cytochrome c7 from Desulfuromonas acetoxidans. Comparison between the reduced and the oxidized forms. Assfalg M; Banci L; Bertini I; Bruschi M; Giudici-Orticoni MT; Turano P Eur J Biochem; 1999 Dec; 266(2):634-43. PubMed ID: 10561607 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of cooperative interactions between substructures of iso-1-cytochrome c using double mutant cycles. Wandschneider E; Hammack BN; Bowler BE Biochemistry; 2003 Sep; 42(36):10659-66. PubMed ID: 12962490 [TBL] [Abstract][Full Text] [Related]
40. Proton NMR assignments and magnetic axes orientations for wild-type yeast iso-1-ferricytochrome c free in solution and bound to cytochrome c peroxidase. Sukits SF; Erman JE; Satterlee JD Biochemistry; 1997 Apr; 36(17):5251-9. PubMed ID: 9136887 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]