These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1371307)

  • 1. Calmodulin activation of the Ca2+ pump revealed by fluorescent chelator dyes in human red blood cell ghosts.
    James-Kracke MR
    J Gen Physiol; 1992 Jan; 99(1):41-62. PubMed ID: 1371307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solitary calcium spike dependent on calmodulin and plasma membrane Ca2+ pump.
    Foder B; Scharff O
    Cell Calcium; 1992 Oct; 13(9):581-91. PubMed ID: 1334811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory interaction between calmodulin and ATP on the red cell Ca2+ pump.
    Muallem S; Karlish SJ
    Biochim Biophys Acta; 1980 Apr; 597(3):631-6. PubMed ID: 6445755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes.
    Agre P; Gardner K; Bennett V
    J Biol Chem; 1983 May; 258(10):6258-65. PubMed ID: 6133862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of human erythrocyte Ca2+-dependent Mg2+-activated ATPase by calmodulin and calcium: quantitative analysis.
    Cox JA; Comte M; Stein EA
    Proc Natl Acad Sci U S A; 1982 Jul; 79(14):4265-9. PubMed ID: 6126873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Does calmodulin participate in the regulation of the Ca-pump of erythrocytes in vivo?].
    Pokudin NI; Petruniaka VV; Orlov SN
    Biokhimiia; 1988 May; 53(5):753-7. PubMed ID: 2971399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the failure of calmodulin to activate Ca2+ pump ATPase of dog red blood cells.
    Schmidt JW; Hinds TR; Vincenzi FF
    Comp Biochem Physiol A Comp Physiol; 1985; 82(3):601-7. PubMed ID: 2866882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between Ca2+-ATPase and endogenous calmodulin of human erythrocyte membranes.
    Klinger R; Wetzker R; Wenz I; Dinjus U; Reissmann R; Frunder H
    Cell Calcium; 1984 Apr; 5(2):167-75. PubMed ID: 6234066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thyroid hormones and active calcium transport of inside-out red cell membrane vesicles.
    Rubinacci A; Divieti P; Lodigiani S; De Ponti A; Samaja M
    Biochem Med Metab Biol; 1992 Dec; 48(3):235-40. PubMed ID: 1335740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active calcium transport in red cell ghosts resealed in dextran solutions.
    Romero PJ
    Biochim Biophys Acta; 1981 Dec; 649(2):404-18. PubMed ID: 6172149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of intracellular free Ca and rate of Ca influx on the Ca pump.
    Yang YC; Yingst DR
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1138-44. PubMed ID: 2525342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calmodulin regulation of Ca2+ transport in human erythrocytes.
    Larsen FL; Katz S; Roufogalis BD
    Biochem J; 1981 Nov; 200(2):185-91. PubMed ID: 6122443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump.
    Yingst DR; Hoffman JF
    J Gen Physiol; 1984 Jan; 83(1):19-45. PubMed ID: 6319543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions of thapsigargin on the Ca(2+)-handling systems of the human platelet. Incomplete inhibition of the dense tubular Ca2+ uptake, partial inhibition of the Ca2+ extrusion pump, increase in plasma membrane Ca2+ permeability, and consequent elevation of resting cytoplasmic Ca2+.
    Tao J; Haynes DH
    J Biol Chem; 1992 Dec; 267(35):24972-82. PubMed ID: 1334075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-labeling studies of the conformation of the Ca(2+)-regulatory protein calmodulin in solution and bound to the membrane skeleton in erythrocyte ghosts: implications to transmembrane signaling.
    Yacko MA; Butterfield DA
    Biophys J; 1992 Aug; 63(2):317-22. PubMed ID: 1330029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions.
    Takakuwa Y; Mohandas N
    J Clin Invest; 1988 Aug; 82(2):394-400. PubMed ID: 3403710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and deactivation kinetics of Ca transport in inside-out erythrocyte membrane vesicles.
    Macintyre JD; Gunn RB
    Biochim Biophys Acta; 1981 Jun; 644(2):351-62. PubMed ID: 7260078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The red blood cell as a model for calmodulin-dependent Ca2+ transport.
    Hinds TR; Vincenzi FF
    Methods Enzymol; 1983; 102():47-62. PubMed ID: 6139737
    [No Abstract]   [Full Text] [Related]  

  • 19. Vanadate inhibition of active Ca2+ transport across human red cell membranes.
    Rossi JP; Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1981 Nov; 648(2):145-50. PubMed ID: 6458333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently.
    Enyedi A; Flura M; Sarkadi B; Gardos G; Carafoli E
    J Biol Chem; 1987 May; 262(13):6425-30. PubMed ID: 3032968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.