These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 1371316)

  • 1. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade.
    Zhong Y; Budnik V; Wu CF
    J Neurosci; 1992 Feb; 12(2):644-51. PubMed ID: 1371316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants.
    Renger JJ; Ueda A; Atwood HL; Govind CK; Wu CF
    J Neurosci; 2000 Jun; 20(11):3980-92. PubMed ID: 10818133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.
    Ueda A; Wu CF
    J Neurogenet; 2012 Mar; 26(1):64-81. PubMed ID: 22380612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant.
    Ueda A; Wu CF
    J Neurogenet; 2009; 23(1-2):185-99. PubMed ID: 19101836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological plasticity of motor axons in Drosophila mutants with altered excitability.
    Budnik V; Zhong Y; Wu CF
    J Neurosci; 1990 Nov; 10(11):3754-68. PubMed ID: 1700086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced growth cone motility in cultured neurons from Drosophila memory mutants with a defective cAMP cascade.
    Kim YT; Wu CF
    J Neurosci; 1996 Sep; 16(18):5593-602. PubMed ID: 8795615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis.
    Bellen HJ; Gregory BK; Olsson CL; Kiger JA
    Dev Biol; 1987 Jun; 121(2):432-44. PubMed ID: 3034702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential modulation of potassium currents by cAMP and its long-term and short-term effects: dunce and rutabaga mutants of Drosophila.
    Zhong Y; Wu CF
    J Neurogenet; 1993 Aug; 9(1):15-27. PubMed ID: 8295075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of inhibitory GABAergic transmission by cAMP signaling pathway: alterations in learning and memory mutants.
    Ganguly A; Lee D
    Eur J Neurosci; 2013 May; 37(9):1383-93. PubMed ID: 23387411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants.
    Guan Z; Buhl LK; Quinn WG; Littleton JT
    Learn Mem; 2011; 18(4):191-206. PubMed ID: 21422168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade.
    Zhong Y; Wu CF
    Science; 1991 Jan; 251(4990):198-201. PubMed ID: 1670967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K(+)-channel blockers restore synaptic plasticity in the neuromuscular junction of dunce, a Drosophila learning and memory mutant.
    Delgado R; Latorre R; Labarca P
    Proc Biol Sci; 1992 Dec; 250(1329):181-5. PubMed ID: 1362988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of a sensory neuron in Drosophila is abnormal in memory mutants and changes during aging.
    Corfas G; Dudai Y
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7252-6. PubMed ID: 1714597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mutant dunce.
    Levine JD; Casey CI; Kalderon DD; Jackson FR
    Neuron; 1994 Oct; 13(4):967-74. PubMed ID: 7946340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cyclic AMP system and Drosophila learning.
    Davis RL; Cherry J; Dauwalder B; Han PL; Skoulakis E
    Mol Cell Biochem; 1995; 149-150():271-8. PubMed ID: 8569740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila.
    Zhong Y; Wu CF
    J Neurosci; 2004 Feb; 24(6):1439-45. PubMed ID: 14960616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of the learning defect in dunce, a Drosophila learning mutant, by an allele of rutabaga, a second learning mutant.
    Feany MB
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2795-9. PubMed ID: 2157213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep restores place learning to the adenylyl cyclase mutant
    Dissel S; Morgan E; Duong V; Chan D; van Swinderen B; Shaw P; Zars T
    J Neurogenet; 2020 Mar; 34(1):83-91. PubMed ID: 31997683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic depression induced by postsynaptic cAMP production in the Drosophila mushroom body calyx.
    Sato S; Ueno K; Saitoe M; Sakai T
    J Physiol; 2018 Jun; 596(12):2447-2461. PubMed ID: 29659025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of dihydropyridine-sensitive calcium channels in Drosophila by a cAMP-mediated pathway.
    Bhattacharya A; Gu GG; Singh S
    J Neurobiol; 1999 Jun; 39(4):491-500. PubMed ID: 10380071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.