These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 1371528)
1. Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. Sutherland DR; Abdullah KM; Cyopick P; Mellors A J Immunol; 1992 Mar; 148(5):1458-64. PubMed ID: 1371528 [TBL] [Abstract][Full Text] [Related]
2. The glycoprotease of Pasteurella haemolytica A1 eliminates binding of myeloid cells to P-selectin but not to E-selectin. Steininger CN; Eddy CA; Leimgruber RM; Mellors A; Welply JK Biochem Biophys Res Commun; 1992 Oct; 188(2):760-6. PubMed ID: 1280121 [TBL] [Abstract][Full Text] [Related]
3. Differential sensitivity of CD34 epitopes to cleavage by Pasteurella haemolytica glycoprotease: implications for purification of CD34-positive progenitor cells. Sutherland DR; Marsh JC; Davidson J; Baker MA; Keating A; Mellors A Exp Hematol; 1992 Jun; 20(5):590-9. PubMed ID: 1375160 [TBL] [Abstract][Full Text] [Related]
4. Retention of progenitor cell function in CD34+ cells purified using a novel O-sialoglycoprotease. Marsh JC; Sutherland DR; Davidson J; Mellors A; Keating A Leukemia; 1992 Sep; 6(9):926-34. PubMed ID: 1381456 [TBL] [Abstract][Full Text] [Related]
5. Identification of CD34+ subsets after glycoprotease selection: engraftment of CD34+Thy-1+Lin- stem cells in fetal sheep. Sutherland DR; Yeo EL; Stewart AK; Nayar R; DiGiusto R; Zanjani E; Hoffman R; Murray LJ Exp Hematol; 1996 Jun; 24(7):795-806. PubMed ID: 8647230 [TBL] [Abstract][Full Text] [Related]
6. A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves O-sialoglycoproteins. Abdullah KM; Udoh EA; Shewen PE; Mellors A Infect Immun; 1992 Jan; 60(1):56-62. PubMed ID: 1729196 [TBL] [Abstract][Full Text] [Related]
7. Cleavage of epitectin, a mucin-type sialoglycoprotein, from the surface of human laryngeal carcinoma cells by a glycoprotease from Pasteurella haemolytica. Hu RH; Mellors A; Bhavanandan VP Arch Biochem Biophys; 1994 May; 310(2):300-9. PubMed ID: 8179312 [TBL] [Abstract][Full Text] [Related]
8. Down-regulation by tumor necrosis factor-alpha of neutrophil cell surface expression of the sialophorin CD43 and the hyaluronate receptor CD44 through a proteolytic mechanism. Campanero MR; Pulido R; Alonso JL; Pivel JP; Pimentel-Muiños FX; Fresno M; Sánchez-Madrid F Eur J Immunol; 1991 Dec; 21(12):3045-8. PubMed ID: 1721026 [TBL] [Abstract][Full Text] [Related]
9. Adhesion molecules involved in transendothelial migration of human hematopoietic progenitor cells. Voermans C; Rood PM; Hordijk PL; Gerritsen WR; van der Schoot CE Stem Cells; 2000; 18(6):435-43. PubMed ID: 11072032 [TBL] [Abstract][Full Text] [Related]
10. Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. Induction of cleavage of L-selectin via CD16. Bazil V; Strominger JL J Immunol; 1994 Feb; 152(3):1314-22. PubMed ID: 7507963 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the recombinant and authentic forms of the Pasteurella haemolytica A1 glycoprotease. Watt MA; Mellors A; Lo RY FEMS Microbiol Lett; 1997 Feb; 147(1):37-43. PubMed ID: 9037761 [TBL] [Abstract][Full Text] [Related]
12. Modification of CD43 and other lymphocyte O-glycoproteins by core 2 N-acetylglucosaminyltransferase. Barran P; Fellinger W; Warren CE; Dennis JW; Ziltener HJ Glycobiology; 1997 Feb; 7(1):129-36. PubMed ID: 9061371 [TBL] [Abstract][Full Text] [Related]
13. Refolding of recombinant Pasteurella haemolytica A1 glycoprotease expressed in an Escherichia coli thioredoxin gene fusion system. Watt MA; Lo RY; Mellors A Cell Stress Chaperones; 1997 Sep; 2(3):180-90. PubMed ID: 9314606 [TBL] [Abstract][Full Text] [Related]
14. Specific sensitivity of CD43 to neutrophil elastase. Remold-O'Donnell E; Parent D Blood; 1995 Sep; 86(6):2395-402. PubMed ID: 7662987 [TBL] [Abstract][Full Text] [Related]
15. Glycosylation of CD45: carbohydrate composition and its role in acquisition of CD45R0 and CD45RB T cell maturation-related antigen specificities during biosynthesis. Pulido R; Sánchez-Madrid F Eur J Immunol; 1990 Dec; 20(12):2667-71. PubMed ID: 1702721 [TBL] [Abstract][Full Text] [Related]
16. O-glycosylation of leukosialin in K562 cells. Evidence for initiation and elongation in early Golgi compartments. Piller V; Piller F; Klier FG; Fukuda M Eur J Biochem; 1989 Jul; 183(1):123-35. PubMed ID: 2526734 [TBL] [Abstract][Full Text] [Related]
17. Lymphocytic CD43 and CD45 bear sulfate residues potentially implicated in cell to cell interactions. Giordanengo V; Limouse M; Peyron JF; Lefebvre JC Eur J Immunol; 1995 Jan; 25(1):274-8. PubMed ID: 7843243 [TBL] [Abstract][Full Text] [Related]
18. A novel CD8 T cell-restricted CD45RB epitope shared by CD43 is differentially affected by glycosylation. Carlow DA; Ardman B; Ziltener HJ J Immunol; 1999 Aug; 163(3):1441-8. PubMed ID: 10415045 [TBL] [Abstract][Full Text] [Related]
19. Altered O-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. Piller F; Le Deist F; Weinberg KI; Parkman R; Fukuda M J Exp Med; 1991 Jun; 173(6):1501-10. PubMed ID: 2033371 [TBL] [Abstract][Full Text] [Related]
20. Monoclonal antibodies against human leucocyte antigens. II. Antibodies against CD45 (T200), CD3 (T3), CD43, CD10 (CALLA), transferrin receptor (T9), a novel broadly expressed 18-kDa antigen (MEM-43) and a novel antigen of restricted expression (MEM-74). Horejsí V; Angelisová P; Bazil V; Kristofová H; Stoyanov S; Stefanová I; Hausner P; Vosecký M; Hilgert I Folia Biol (Praha); 1988; 34(1):23-34. PubMed ID: 2968928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]