These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 13720182)

  • 21. Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria.
    van Ginkel CG; Welten HG; de Bont JA
    Appl Environ Microbiol; 1987 Dec; 53(12):2903-7. PubMed ID: 16347505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of hydrocarbon structure on fatty acid, fatty alcohol, and beta-hydroxy acid composition in the hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus.
    Soltani M; Metzger P; Largeau C
    Lipids; 2004 May; 39(5):491-505. PubMed ID: 15506246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iso-alkane oxidation by a Pseudomonas. I. Metabolism of 2-methylhexane.
    THIJSSE GJ; van der LINDEN A
    Antonie Van Leeuwenhoek; 1961; 27():171-9. PubMed ID: 13776381
    [No Abstract]   [Full Text] [Related]  

  • 24. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biosynthesis of hydrocarbons by alkane-oxidizing microorganisms].
    Dediukhina EG; Andreev LV; Popkov GP; Eroshin VK
    Mikrobiologiia; 1972; 41(4):664-7. PubMed ID: 5084514
    [No Abstract]   [Full Text] [Related]  

  • 26. Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria.
    Mikolasch A; Hammer E; Schauer F
    Appl Environ Microbiol; 2003 Mar; 69(3):1670-9. PubMed ID: 12620858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial metabolism of alkylbenzene sulphonates. Bacterial metabolism of undecylbenzene-p-sulphonate and dodecylbenzene-p-sulphonate.
    Willetts AJ; Cain RB
    Biochem J; 1972 Sep; 129(2):389-402. PubMed ID: 4345274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of environmental parameters on bacterial degradation of Bunker C oil, Crude oils, and hydrocarbons.
    Mulkins-Phillips GJ; Stewart JE
    Appl Microbiol; 1974 Dec; 28(6):915-22. PubMed ID: 4451374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultivation of the yeast Candida lipolytica on hydrocarbon. 3. Oxidation and utilization of individual pure hydrocarbons.
    Munk V; Volfová O; Dostálek M; Mostecký J; Pecka K
    Folia Microbiol (Praha); 1969; 14(4):334-44. PubMed ID: 5820746
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of substitution in the side-chain on beta-oxidation of aryloxy-alkylcarboxylic acids by Nocardia opaca.
    WEBLEY DM; DUFF RB; FARMER VC
    Nature; 1959 Mar; 183(4663):748-9. PubMed ID: 13644179
    [No Abstract]   [Full Text] [Related]  

  • 31. Hydrocarbons disposition, lipid content, and fatty acid composition in trout after long-term dietary exposure to n-alkanes.
    Cravedi JP; Tulliez JE
    Environ Res; 1983 Dec; 32(2):398-413. PubMed ID: 6641671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial oxidation of cholic acid.
    HALPERIN AH; QUASTEL JH; SCHOLEFIELD PG
    Arch Biochem Biophys; 1954 Sep; 52(1):5-17. PubMed ID: 13198232
    [No Abstract]   [Full Text] [Related]  

  • 33. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M; Shapiro J
    J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
    LUKINS HB; FOSTER JW
    J Bacteriol; 1963 May; 85(5):1074-87. PubMed ID: 14043998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Assimilation of hydrocarbons by microorganisms of the Nocardia genus and "rhodochrous" group].
    Nesterenko OA; Kasumova SA; Kvasnikov EI
    Mikrobiol Zh (1978); 1979; 41(2):110-4. PubMed ID: 459951
    [No Abstract]   [Full Text] [Related]  

  • 36. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.
    Hasinger M; Scherr KE; Lundaa T; Bräuer L; Zach C; Loibner AP
    J Biotechnol; 2012 Feb; 157(4):490-8. PubMed ID: 22001845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Formation of primary alcohols and palmitic acid in the microbiological oxidation of hexadecane].
    Berezin IV; Bonartseva GN; Ol'sinskaia NL; Vorob'eva LI; Ergorov NS
    Prikl Biokhim Mikrobiol; 1975; 11(5):653-6. PubMed ID: 1187568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial oxidation of gaseous alkanes.
    LEADBETTER ER; FOSTER JW
    Arch Mikrobiol; 1960; 35():92-104. PubMed ID: 14414934
    [No Abstract]   [Full Text] [Related]  

  • 39. The special physiology of hydrocarbon oxidizing bacteria.
    Quayle JR
    J Gen Microbiol; 1969 Mar; 55(3):xxvii. PubMed ID: 5795917
    [No Abstract]   [Full Text] [Related]  

  • 40. The oxidation of straight and branched alkanes by Pseudomonas strains.
    THIJSSE GJ; ZWILLING-DE VRIES JT
    Antonie Van Leeuwenhoek; 1959; 25():332-6. PubMed ID: 13837856
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.