These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 13720343)

  • 1. Variation in phytopathogenic fungi.
    DAY PR
    Annu Rev Microbiol; 1960; 14():1-16. PubMed ID: 13720343
    [No Abstract]   [Full Text] [Related]  

  • 2. [Antifungal activity of higher plants. Action of 49 indigenous plants on 11 phytopathogenic fungi].
    Chesne C; Amoros M; Girre L
    Ann Pharm Fr; 1984; 42(1):27-33. PubMed ID: 6486651
    [No Abstract]   [Full Text] [Related]  

  • 3. [Toxic substances produced by phytopathogenic fungi and bacteria].
    ORSENIGO M
    Ann Microbiol Enzimol; 1960 May; 10():146-73. PubMed ID: 13731288
    [No Abstract]   [Full Text] [Related]  

  • 4. [Antifungal activity of higher plants: action of 39 indigenous plants on 4 phytopathogenic fungi].
    Abraham C; Amoros M; Girre L
    Ann Pharm Fr; 1983; 41(3):251-60. PubMed ID: 6660811
    [No Abstract]   [Full Text] [Related]  

  • 5. [The use of mutants of phytopathogenic bacteria and fungi for the study of the host-parasite interrelationship in plants].
    Vasil'eva SV; Lekomtseva SN
    Usp Sovrem Biol; 1969; 67(3):423-31. PubMed ID: 4899535
    [No Abstract]   [Full Text] [Related]  

  • 6. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi.
    Lee N; D'Souza CA; Kronstad JW
    Annu Rev Phytopathol; 2003; 41():399-427. PubMed ID: 12651963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Lytic enzymes of Trichoderma and their role in protecting plants from fungal diseases].
    Markovich NA; Kononova GL
    Prikl Biokhim Mikrobiol; 2003; 39(4):389-400. PubMed ID: 14520957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Plants affecting the phytopathogenic soil fungi. 3. Helminthosporium sativum P., K. et B].
    Seidel D
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(5):441-5. PubMed ID: 5536171
    [No Abstract]   [Full Text] [Related]  

  • 9. Antifungal agents. Part 4: Synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro.
    Xu H; Fan LL
    Eur J Med Chem; 2011 Jan; 46(1):364-9. PubMed ID: 21093115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of plants on phytopathogenic soil fungi. VI. Rhizoctonia solani Kühn].
    Seidel D
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(6):546-51. PubMed ID: 5536791
    [No Abstract]   [Full Text] [Related]  

  • 11. Autophagy in plants and phytopathogens.
    Yoshimoto K; Takano Y; Sakai Y
    FEBS Lett; 2010 Apr; 584(7):1350-8. PubMed ID: 20079356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrition acquisition strategies during fungal infection of plants.
    Divon HH; Fluhr R
    FEMS Microbiol Lett; 2007 Jan; 266(1):65-74. PubMed ID: 17083369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Plants affecting the phytopathogenic fungi. IV. Fusarium solani f. pisi (Jones) Snyd. et Hans].
    Seidel D
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(5):446-9. PubMed ID: 5535932
    [No Abstract]   [Full Text] [Related]  

  • 14. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase.
    Papapostolou I; Georgiou CD
    Fungal Biol; 2010; 114(5-6):387-95. PubMed ID: 20943149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation and phenotypic characteristics of growth-stimulating rhizobacteria (PGPR), with high root-colonizing and phytopathogenic fungi inhibiting abilities].
    Kravchenko LV; Makarova NM; Azarova TS; Provorov NA; Tikhonovich IA
    Mikrobiologiia; 2002; 71(4):521-5. PubMed ID: 12244723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and fungistatic activity of new groups of 2,4-dihydroxythiobenzoyl derivatives against phytopathogenic fungi.
    Legocki J; Matysiak J; Niewiadomy A; Kostecka M
    J Agric Food Chem; 2003 Jan; 51(2):362-8. PubMed ID: 12517096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and in vitro antimicrobial efficiency of Butea monosperma seed oil on human pathogenic bacteria and phytopathogenic fungi.
    Mehta BK; Dubey A; Bokadia MM; Mehta SC
    Acta Microbiol Hung; 1983; 30(1):75-7. PubMed ID: 6659857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi].
    Tomilova OG; Shternshis MV
    Prikl Biokhim Mikrobiol; 2006; 42(1):76-80. PubMed ID: 16521581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Trigliceropeptides from pseudomonades: new agents for biological control of phytopathogenic fungi].
    Chetverikov SP; Loginov ON
    Prikl Biokhim Mikrobiol; 2005; 41(1):90-4. PubMed ID: 15810738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effects of plants on phytopathogenic soil fungi. I. Cercosporella herpotrichoides Fron].
    Seidel D; Fischer R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(7):699-708. PubMed ID: 5396108
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.