These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 13722297)

  • 1. Enhancement of ATP-ase activity, somite segmentation rate and aggregation of somite cells of Xenopus embryos by treatment with ATP.
    DEUCHAR EM
    Exp Cell Res; 1961 Feb; 23():21-8. PubMed ID: 13722297
    [No Abstract]   [Full Text] [Related]  

  • 2. Amino acid activation in embryonic tissues of Xenopus laevis. I. Increased 32P exchange between pyrophosphate and adenosine triphosphate in the presence of added L-leucine.
    DEUCHAR EM
    Exp Cell Res; 1961 Nov; 25():364-73. PubMed ID: 13885829
    [No Abstract]   [Full Text] [Related]  

  • 3. Relation between somite segregation rate and ATP-ase activity in early chick embryos.
    DEUCHAR EM
    J Embryol Exp Morphol; 1960 Sep; 8():259-67. PubMed ID: 13722298
    [No Abstract]   [Full Text] [Related]  

  • 4. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of an amino acid analog on catheptic activity in somite mesoderm of the chick embryo.
    DEUCHAR EM
    Dev Biol; 1960 Apr; 2():129-37. PubMed ID: 13816247
    [No Abstract]   [Full Text] [Related]  

  • 6. The making of the somite: molecular events in vertebrate segmentation.
    Saga Y; Takeda H
    Nat Rev Genet; 2001 Nov; 2(11):835-45. PubMed ID: 11715039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The combination of adenosinetriphosphate and diphosphopyridine nucleotide as a radio-protector of embryonal cells].
    VERGA L; COUCOURDE F
    Boll Soc Ital Biol Sper; 1961 Dec; 37():1171-3. PubMed ID: 13925430
    [No Abstract]   [Full Text] [Related]  

  • 8. The uptake and distribution of water in the embryo of Xenopus laevis (Daudin).
    TUFT PH
    J Exp Biol; 1962 Mar; 39():1-19. PubMed ID: 13923033
    [No Abstract]   [Full Text] [Related]  

  • 9. Low resistance junctions between mesoderm cells during development of trunk muscles.
    Blackshaw SE; Warner AE
    J Physiol; 1976 Feb; 255(1):209-30. PubMed ID: 1255515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the metabolic activity of the myocardium.
    DALLI GC; CHIAVERINI P
    Panminerva Med; 1962 May; 4():222-3. PubMed ID: 13883233
    [No Abstract]   [Full Text] [Related]  

  • 11. High diadenosine tetraphosphate (Ap4A) level in germ cells and embryos of sea urchin and Xenopus and its effect on DNA synthesis.
    Weinmann-Dorsch C; Grummt F
    Exp Cell Res; 1985 Sep; 160(1):47-53. PubMed ID: 4043245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lithium ions on the penetration of phosphate into Xenopus embryos.
    THOMASON D
    Nature; 1957 Apr; 179(4564):823-4. PubMed ID: 13430710
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of adenine nucleotides and ATP-ase poisons on the rate of oxidation of pyridine nucleotides by kidney microsomes.
    Dikstein S; Wald C; Czaczkes W
    Naturwissenschaften; 1972 Oct; 59(10):472-3. PubMed ID: 4404459
    [No Abstract]   [Full Text] [Related]  

  • 14. Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation.
    Goda T; Takagi C; Ueno N
    Dev Dyn; 2009 Nov; 238(11):2867-76. PubMed ID: 19795516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine triphosphatase activity in early somite tissue of the chick embryo.
    DEUCHAR EM
    J Embryol Exp Morphol; 1960 Sep; 8():251-8. PubMed ID: 13722295
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis.
    Peres JN; McNulty CL; Durston AJ
    Mech Dev; 2006 Apr; 123(4):321-33. PubMed ID: 16644189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation.
    Youn BW; Malacinski GM
    J Embryol Exp Morphol; 1981 Aug; 64():23-43. PubMed ID: 7310302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation.
    Burgess AM
    J Anat; 1983 Jun; 136(Pt 4):829-35. PubMed ID: 6885630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell behaviors associated with somite segmentation and rotation in Xenopus laevis.
    Afonin B; Ho M; Gustin JK; Meloty-Kapella C; Domingo CR
    Dev Dyn; 2006 Dec; 235(12):3268-79. PubMed ID: 17048252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The somite stage of human development studied with the histochemical reaction for the demonstration of alkaline glycerophosphatase.
    ROSSI F; REALE E
    Acta Anat (Basel); 1957; 30(1-4):656-81. PubMed ID: 13478359
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.