These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 13723068)

  • 1. Influence of age and cataract formation on the ribonucleic acid of the lens. I. Changes in various fractions of ribonucleic acid of rat lenses during aging.
    DISCHE Z; DEVI A; ZELMENIS G
    Am J Ophthalmol; 1961 May; 51():993-1004. PubMed ID: 13723068
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of age and cataract formation on the ribonucleic acid of the lens. II. Changes in concentration and distribution of RNA in rabbit lenses during the first year of life.
    DISCHE Z; ZELMENIS G; LARYS N
    Invest Ophthalmol; 1962 Feb; 1():101-10. PubMed ID: 13886568
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of aging on protein and RNA metabolism in the dogfish lens.
    LERMAN S; FONTAINE J
    Growth; 1962 Jun; 26():111-6. PubMed ID: 14464234
    [No Abstract]   [Full Text] [Related]  

  • 4. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative ribonucleic acid content of lens and retina during lens induction in the chick.
    MCKEEHAN MS
    Am J Anat; 1956 Jul; 99(1):131-55. PubMed ID: 13362127
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystallin degradation and insolubilization in regions of young rat lens with calcium ionophore cataract.
    Iwasaki N; David LL; Shearer TR
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):502-9. PubMed ID: 7843919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses.
    Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nerve growth factor (NGF) and lenses: effects of NGF in an in vitro rat model of cataract.
    Ghinelli E; Aloe L; Cortes M; Micera A; Lambiase A; Bonini S
    Graefes Arch Clin Exp Ophthalmol; 2003 Oct; 241(10):845-51. PubMed ID: 13680251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of ribonucleic acid from rat lens.
    DEVI A
    Can J Biochem Physiol; 1962 Jan; 40():41-7. PubMed ID: 13885877
    [No Abstract]   [Full Text] [Related]  

  • 12. Ageing and compositional changes of rat lens.
    Wada E; Tsumita T
    Mech Ageing Dev; 1984 Oct; 27(3):287-94. PubMed ID: 6513607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional clustering of global gene expression differences between age-related cataract and clear human lenses and aged human lenses.
    Hawse JR; Hejtmancik JF; Horwitz J; Kantorow M
    Exp Eye Res; 2004 Dec; 79(6):935-40. PubMed ID: 15642332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses.
    Dobretsov EA; Snytnikova OA; Koptyug IV; Kaptein R; Tsentalovich YP
    Exp Eye Res; 2013 Aug; 113():162-71. PubMed ID: 23791967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RIBONUCLEIC ACID CONTENT AND DISTRIBUTION IN NORMAL HUMAN LENS AND IN SENILE CATARACT.
    MARAINI G; DIOTTI G; SANTORI M
    Exp Eye Res; 1964 Jun; 3():115-7. PubMed ID: 14211913
    [No Abstract]   [Full Text] [Related]  

  • 16. [1H-NMR study on protein of normal and galactose cataractous rat whole lenses].
    Kaizuka Y
    Nippon Ganka Gakkai Zasshi; 1992 Jan; 96(1):15-21. PubMed ID: 1553869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative estimation of the relationship between amino acids and cataracts in rat lens].
    Iijima T; Tutiya A; Yabe N; Kadofuku T; Sato T
    Nippon Ganka Gakkai Zasshi; 1992 Oct; 96(10):1234-9. PubMed ID: 1442346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do changes in the hydration of the diabetic human lens precede cataract formation?
    Bettelheim FA; Li L; Zeng FF
    Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.