These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1372311)

  • 41. A novel promoter motif for Caulobacter cell cycle-controlled DNA replication genes.
    Winzeler E; Shapiro L
    J Mol Biol; 1996 Dec; 264(3):412-25. PubMed ID: 8969294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interplay between flagellation and cell cycle control in Caulobacter.
    Ardissone S; Viollier PH
    Curr Opin Microbiol; 2015 Dec; 28():83-92. PubMed ID: 26476805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus.
    Mullin DA; Van Way SM; Blankenship CA; Mullin AH
    J Bacteriol; 1994 Oct; 176(19):5971-81. PubMed ID: 7928958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2002 Feb; 43(3):597-615. PubMed ID: 11929518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter.
    Wu J; Ohta N; Newton A
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1443-8. PubMed ID: 9465034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional analysis of the Caulobacter 4.5 S RNA ffs gene and the physiological basis of an ffs mutant with a Ts phenotype.
    Winzeler E; Wheeler R; Shapiro L
    J Mol Biol; 1997 Oct; 272(5):665-76. PubMed ID: 9368649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of a cell-cycle promoter bound by a response regulator.
    Ouimet MC; Marczynski GT
    J Mol Biol; 2000 Sep; 302(4):761-75. PubMed ID: 10993722
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organization of the flaFG gene cluster and identification of two additional genes involved in flagellum biogenesis in Caulobacter crescentus.
    Schoenlein PV; Gallman LS; Ely B
    J Bacteriol; 1989 Mar; 171(3):1544-53. PubMed ID: 2921244
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus.
    Ohta N; Ninfa AJ; Allaire A; Kulick L; Newton A
    J Bacteriol; 1997 Apr; 179(7):2169-80. PubMed ID: 9079901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A sigma 54 promoter and downstream sequence elements ftr2 and ftr3 are required for regulated expression of divergent transcription units flaN and flbG in Caulobacter crescentus.
    Mullin DA; Newton A
    J Bacteriol; 1993 Apr; 175(7):2067-76. PubMed ID: 8458849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle.
    Winzeler E; Shapiro L
    J Mol Biol; 1995 Aug; 251(3):346-65. PubMed ID: 7544413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Escherichia coli chemoreceptor gene is temporally controlled in Caulobacter.
    Frederikse PH; Shapiro L
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4061-5. PubMed ID: 2657737
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator.
    Aldridge P; Jenal U
    Mol Microbiol; 1999 Apr; 32(2):379-91. PubMed ID: 10231493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Caulobacter flagellar function, but not assembly, requires FliL, a non-polarly localized membrane protein present in all cell types.
    Jenal U; White J; Shapiro L
    J Mol Biol; 1994 Oct; 243(2):227-44. PubMed ID: 7932752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feedback control of a master bacterial cell-cycle regulator.
    Domian IJ; Reisenauer A; Shapiro L
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6648-53. PubMed ID: 10359766
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The control of asymmetric gene expression during Caulobacter cell differentiation.
    Marczynski GT; Shapiro L
    Arch Microbiol; 1995 May; 163(5):313-21. PubMed ID: 7794099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deciphering bacterial flagellar gene regulatory networks in the genomic era.
    Smith TG; Hoover TR
    Adv Appl Microbiol; 2009; 67():257-95. PubMed ID: 19245942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation.
    Davis NJ; Viollier PH
    FEMS Microbiol Lett; 2011 Jun; 319(2):146-52. PubMed ID: 21457294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of Caulobacter dnaA as a function of the cell cycle.
    Zweiger G; Shapiro L
    J Bacteriol; 1994 Jan; 176(2):401-8. PubMed ID: 8288535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes.
    Schmitz A; Josenhans C; Suerbaum S
    J Bacteriol; 1997 Feb; 179(4):987-97. PubMed ID: 9023175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.