BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1372605)

  • 21. F508del disturbs the dynamics of the nucleotide binding domains of CFTR before and after ATP hydrolysis.
    Abreu B; Lopes EF; Oliveira ASF; Soares CM
    Proteins; 2020 Jan; 88(1):113-126. PubMed ID: 31298435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains.
    Anderson MP; Welsh MJ
    Science; 1992 Sep; 257(5077):1701-4. PubMed ID: 1382316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cystic fibrosis gene.
    Harris A
    Br Med Bull; 1992 Oct; 48(4):738-53. PubMed ID: 1281033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein.
    Szczypka MS; Wemmie JA; Moye-Rowley WS; Thiele DJ
    J Biol Chem; 1994 Sep; 269(36):22853-7. PubMed ID: 7521334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of the delta F508 mutation on the structure, function, and folding of the first nucleotide-binding domain of CFTR.
    Thomas PJ; Pedersen PL
    J Bioenerg Biomembr; 1993 Feb; 25(1):11-9. PubMed ID: 7680027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications.
    Gentzsch M; Aleksandrov A; Aleksandrov L; Riordan JR
    Biochem J; 2002 Sep; 366(Pt 2):541-8. PubMed ID: 12020354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cystic fibrosis mutation (delta F508) does not influence the chloride channel activity of CFTR.
    Li C; Ramjeesingh M; Reyes E; Jensen T; Chang X; Rommens JM; Bear CE
    Nat Genet; 1993 Apr; 3(4):311-6. PubMed ID: 7526932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation.
    Dalemans W; Barbry P; Champigny G; Jallat S; Dott K; Dreyer D; Crystal RG; Pavirani A; Lecocq JP; Lazdunski M
    Nature; 1991 Dec 19-26; 354(6354):526-8. PubMed ID: 1722027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cystic fibrosis transmembrane conductance regulator. Effects of the most common cystic fibrosis-causing mutation on the secondary structure and stability of a synthetic peptide.
    Thomas PJ; Shenbagamurthi P; Sondek J; Hullihen JM; Pedersen PL
    J Biol Chem; 1992 Mar; 267(9):5727-30. PubMed ID: 1372891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508.
    deCarvalho AC; Ndi CP; Tsopmo A; Tane P; Ayafor J; Connolly JD; Teem JL
    Mol Med; 2002 Feb; 8(2):75-87. PubMed ID: 12080183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds.
    Dörk T; Wulbrand U; Tümmler B
    Genomics; 1993 Mar; 15(3):688-91. PubMed ID: 7682196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein.
    Cutting GR; Kasch LM; Rosenstein BJ; Zielenski J; Tsui LC; Antonarakis SE; Kazazian HH
    Nature; 1990 Jul; 346(6282):366-9. PubMed ID: 1695717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The cystic fibrosis gene, its product CFTR protein and its mutations].
    Goossens M; Fanen P; Costes B; Ghanem N
    Bull Acad Natl Med; 1993 Mar; 177(3):371-80; discussion 380-1. PubMed ID: 7689915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening for non-delta F508 mutations in five exons of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in Italy.
    Devoto M; Ronchetto P; Fanen P; Orriols JJ; Romeo G; Goossens M; Ferrari M; Magnani C; Seia M; Cremonesi L
    Am J Hum Genet; 1991 Jun; 48(6):1127-32. PubMed ID: 1709778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insight into cystic fibrosis by structural modelling of CFTR first nucleotide binding fold (NBF1).
    Annereau JP; Stoven V; Bontems F; Barthe J; Lenoir G; Blanquet S; Lallemand JY
    C R Acad Sci III; 1997 Feb; 320(2):113-21. PubMed ID: 9181119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase.
    Ko YH; Pedersen PL
    J Biol Chem; 1995 Sep; 270(38):22093-6. PubMed ID: 7545672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.
    Riordan JR; Rommens JM; Kerem B; Alon N; Rozmahel R; Grzelczak Z; Zielenski J; Lok S; Plavsic N; Chou JL
    Science; 1989 Sep; 245(4922):1066-73. PubMed ID: 2475911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the cystic fibrosis transmembrane regulator delta F508 mutation.
    Guay-Broder C; Jacobson KA; Barnoy S; Cabantchik ZI; Guggino WB; Zeitlin PL; Turner RJ; Vergara L; Eidelman O; Pollard HB
    Biochemistry; 1995 Jul; 34(28):9079-87. PubMed ID: 7542476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutation of R555 in CFTR-delta F508 enhances function and partially corrects defective processing.
    Teem JL; Carson MR; Welsh MJ
    Recept Channels; 1996; 4(1):63-72. PubMed ID: 8723647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites.
    Weinreich F; Riordan JR; Nagel G
    J Gen Physiol; 1999 Jul; 114(1):55-70. PubMed ID: 10398692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.