These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. A new element in the control of DNA initiation in Escherichia coli. Blau S; Mordoh J Proc Natl Acad Sci U S A; 1972 Oct; 69(10):2895-8. PubMed ID: 4562745 [TBL] [Abstract][Full Text] [Related]
45. [Antibiotics as an aid in the studies of cell division regulation in Escherichia coli]. Hoffmann B Zentralbl Bakteriol Orig A; 1974; 228(1):223-32. PubMed ID: 4154671 [No Abstract] [Full Text] [Related]
46. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. WISSEMAN CL; SMADEL JE; HAHN FE; HOPPS HE J Bacteriol; 1954 Jun; 67(6):662-73. PubMed ID: 13174493 [No Abstract] [Full Text] [Related]
47. Patterns of cellular controls operating in bacteriophage reproduction. II. Effect of 5-fluorouracil on metabolic events in bacteria infected with coliphage T2r. SAUKKONEN JJ; GOODMAN F; CHARGAFF E Biochim Biophys Acta; 1960 Nov; 44():469-77. PubMed ID: 13746781 [No Abstract] [Full Text] [Related]
48. Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. ARONSON AI; SPIEGELMAN S Biochim Biophys Acta; 1961 Oct; 53():70-84. PubMed ID: 13862509 [No Abstract] [Full Text] [Related]
49. Replication of deoxyribonucleic acid in non-dividing bacteria. NAKADA D; RYAN FJ Nature; 1961 Feb; 189():398-9. PubMed ID: 13727575 [No Abstract] [Full Text] [Related]
50. Mechanism of entry of 5-bromouracil and orthophosphate into deoxyribonucleic acid of E. coli. DARMSTADT RA; HINDS HA; HUDSON PB; PRICE TD; ZAMENHOF S Nature; 1956 Sep; 178(4535):684-6. PubMed ID: 13369500 [No Abstract] [Full Text] [Related]
51. beta-Galactosidase synthesis by Escherichia coli zygotes in the absence of DNA synthesis. YANAGISAWA K; NAKADA D Z Vererbungsl; 1961; 92():413-5. PubMed ID: 14008941 [No Abstract] [Full Text] [Related]
52. Nature of R-factor replication in the presence of chloramphenicol. Crosa JH; Luttropp LK; Falkow S Proc Natl Acad Sci U S A; 1975 Feb; 72(2):654-8. PubMed ID: 1091928 [TBL] [Abstract][Full Text] [Related]
53. Protoplasts of E. coli as sources and acceptors of deoxypentose nucleic acid: rehabilitation of a deficient mutant. CHARGAFF E; SCHULMAN HM; SHAPIRO HS Nature; 1957 Oct; 180(4591):851-2. PubMed ID: 13483536 [No Abstract] [Full Text] [Related]
54. Chromosome replication, transcription and control of cell division in Escherichia coli. Jones NC; Donachie WD Nat New Biol; 1973 May; 243(125):100-3. PubMed ID: 4575300 [No Abstract] [Full Text] [Related]
57. Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of chloromycetin. NEIDHARDT FC; GROS F Biochim Biophys Acta; 1957 Sep; 25(3):513-20. PubMed ID: 13479421 [No Abstract] [Full Text] [Related]
58. Selective inhibition of formation of deoxyribonucleic acid in Escherichia coli by mitomycin C. SHIBA S; TERAWAKI A; TAGUCHI T; KAWAMATA J Nature; 1959 Apr; 183(4667):1056-7. PubMed ID: 13644283 [No Abstract] [Full Text] [Related]
59. The effect of the isomers of chloramphenicol on growth and indole synthesis by Escherichia coli 7-4. McDOUGALL B; GIBSON F Aust J Exp Biol Med Sci; 1958 Jun; 36(3):245-9. PubMed ID: 13596271 [No Abstract] [Full Text] [Related]
60. Influence of chloramphenicol on thymineless death in bacteria. Ganguli N; Bhattacharjee SB Biochim Biophys Acta; 1968 Dec; 169(2):545-7. PubMed ID: 4883327 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]