These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 13728770)

  • 1. Studies on phycobilin formation with mutants of Cyanidium caldarium.
    NICHOLS KE; BOGORAD L
    Nature; 1960 Dec; 188():870-2. PubMed ID: 13728770
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors.
    Rhie G; Beale SI
    J Biol Chem; 1994 Apr; 269(13):9620-6. PubMed ID: 8144549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of phycobilins. Ferredoxin-supported nadph-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium.
    Rhie G; Beale SI
    J Biol Chem; 1992 Aug; 267(23):16088-93. PubMed ID: 1644795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies with Cyanidium caldarium. I. The fine structure and systematic position of the organism.
    MERCER FV; BOGORAD L; MULLENS R
    J Cell Biol; 1962 Jun; 13(3):393-403. PubMed ID: 14472748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte.
    ALLEN MB
    Arch Mikrobiol; 1959; 32(3):270-7. PubMed ID: 13628094
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of bile-pigment synthesis in algae. 18O incorporation into phycocyanobilin in the unicellular rhodophyte, Cyanidium caldarium.
    Brown SB; Holroyd AJ; Troxler RF
    Biochem J; 1980 Aug; 190(2):445-9. PubMed ID: 7470059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the formation of phycocyanin, porphyrins, and a blue phycobilin by wild-type and mutant strains of Cyanidium caldarium.
    Troxler RF; Bogorad L
    Plant Physiol; 1966 Mar; 41(3):491-9. PubMed ID: 5906379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bile pigment synthesis in plants. Mechanism of 18O incorporation into phycocyanobilin in the unicellular rhodophyte. Cyanidium caldarium.
    Troxler RF; Brown AS; Brown SB
    J Biol Chem; 1979 May; 254(9):3411-8. PubMed ID: 429358
    [No Abstract]   [Full Text] [Related]  

  • 9. Phycocyanobilin synthesis in the unicellular rhodophyte Cyanidium caldarium.
    Troxler RF; Kelly P; Brown SB
    Biochem J; 1978 Jun; 172(3):569-76. PubMed ID: 687359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in composition of cellular material during formation of phycobilin chromoproteids in a blue-green alga, Tolypothrix tenuis.
    FUJITA Y; HATTORI A
    J Biochem; 1962 Jul; 52():38-42. PubMed ID: 13895763
    [No Abstract]   [Full Text] [Related]  

  • 11. Properties of phycobilins from Porphyra naiadum.
    AIRTH RL; BLINKS LR
    J Gen Physiol; 1957 Sep; 41(1):77-90. PubMed ID: 13463270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of N-methylprotoporphyrin IX on the synthesis of photosynthetic pigments in Cyanidium caldarium. Further evidence for the role of haem in the biosynthesis of plant billins.
    Brown SB; Holroyd JA; Vernon DI; Troxler RF; Smith KM
    Biochem J; 1982 Nov; 208(2):487-91. PubMed ID: 6760860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile pigment synthesis in plants. Incorporation of haem into phycocyanobilin and phycobiliproteins in Cyanidium caldarium.
    Brown SB; Holroyd JA; Troxler RF; Offner GD
    Biochem J; 1981 Jan; 194(1):137-47. PubMed ID: 7305974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Protoheme and Heme a Precursors Solely from Glutamate in the Unicellular Red Alga Cyanidium caldarium.
    Weinstein JD; Beale SI
    Plant Physiol; 1984 Jan; 74(1):146-51. PubMed ID: 16663369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phycobilins and Phycobiliproteins Used in Food Industry and Medicine.
    Mysliwa-Kurdziel B; Solymosi K
    Mini Rev Med Chem; 2017; 17(13):1173-1193. PubMed ID: 27633748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in quantum yield of photosynthesis in the red alga Porphyridium cruentum caused by stepwise reduction in the intensity of light preferentially absorbed by the phycobilins.
    THOMAS JB; GOVINDJEE
    Biophys J; 1960 Sep; 1(1):63-72. PubMed ID: 13776490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of protoporphyrin IX and Zn protoporphyrin IX in Cyanidium caldarium.
    Csatorday K; Maccoll R; Berns DS
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1700-2. PubMed ID: 16592992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying pigment content in crustose coralline algae using hyperspectral imaging: A case study with Tethysphytum antarcticum (Ross Sea, Antarctica).
    Montes-Herrera JC; Cimoli E; Cummings VJ; D'Archino R; Nelson WA; Lucieer A; Lucieer V
    J Phycol; 2024 Jun; 60(3):695-709. PubMed ID: 38558363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced efficiency and pigment alterations in red algae.
    YOCUM CS; BLINKS LR
    J Gen Physiol; 1958 Jul; 41(6):1113-7. PubMed ID: 13563801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative growth of the thermal algae Cyanidium caldarium on nitrate and ammonia at different temperatures.
    Rigano C; Violante U
    Arch Mikrobiol; 1972; 85(1):13-8. PubMed ID: 5072724
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.