These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 1372979)
1. A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding. Bass MB; Hopkins DF; Jaquysh WA; Ornstein RL Proteins; 1992 Mar; 12(3):266-77. PubMed ID: 1372979 [TBL] [Abstract][Full Text] [Related]
2. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Brünger AT; Karplus M Proteins; 1988; 4(2):148-56. PubMed ID: 3227015 [TBL] [Abstract][Full Text] [Related]
3. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
4. Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water. Berndt KD; Güntert P; Wüthrich K Proteins; 1996 Mar; 24(3):304-13. PubMed ID: 8778777 [TBL] [Abstract][Full Text] [Related]
5. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction. Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349 [TBL] [Abstract][Full Text] [Related]
6. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor. Williams RL; Vila J; Perrot G; Scheraga HA Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032 [TBL] [Abstract][Full Text] [Related]
7. The ribbon of hydrogen bonds and the pseudomolecule in the three-dimensional structure of globular proteins. III. Bovine pancreatic ribonuclease A and bovine seminal ribonuclease. Peters D; Peters J Biopolymers; 2002 Dec; 65(5):347-53. PubMed ID: 12389214 [TBL] [Abstract][Full Text] [Related]
8. High-resolution structures of three new trypsin-squash-inhibitor complexes: a detailed comparison with other trypsins and their complexes. Helland R; Berglund GI; Otlewski J; Apostoluk W; Andersen OA; Willassen NP; Smalås AO Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):139-48. PubMed ID: 10089404 [TBL] [Abstract][Full Text] [Related]
9. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686 [TBL] [Abstract][Full Text] [Related]
10. Statistical and molecular dynamics studies of buried waters in globular proteins. Park S; Saven JG Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899 [TBL] [Abstract][Full Text] [Related]
11. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. Word JM; Lovell SC; Richardson JS; Richardson DC J Mol Biol; 1999 Jan; 285(4):1735-47. PubMed ID: 9917408 [TBL] [Abstract][Full Text] [Related]
12. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor. Liu Y; Breslauer K; Anderson S Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914 [TBL] [Abstract][Full Text] [Related]
13. The crystal structures of the complexes between bovine beta-trypsin and ten P1 variants of BPTI. Helland R; Otlewski J; Sundheim O; Dadlez M; Smalås AO J Mol Biol; 1999 Apr; 287(5):923-42. PubMed ID: 10222201 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases. Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824 [TBL] [Abstract][Full Text] [Related]
15. Tyrosine hydrogen bonds make a large contribution to protein stability. Pace CN; Horn G; Hebert EJ; Bechert J; Shaw K; Urbanikova L; Scholtz JM; Sevcik J J Mol Biol; 2001 Sep; 312(2):393-404. PubMed ID: 11554795 [TBL] [Abstract][Full Text] [Related]
16. Retardation of the unfolding process by single N-glycosylation of ribonuclease A based on molecular dynamics simulations. Choi Y; Lee JH; Hwang S; Kim JK; Jeong K; Jung S Biopolymers; 2008 Feb; 89(2):114-23. PubMed ID: 17937402 [TBL] [Abstract][Full Text] [Related]
17. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks. Cierpicki T; Otlewski J J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783 [TBL] [Abstract][Full Text] [Related]
18. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Li X; Jacobson MP; Zhu K; Zhao S; Friesner RA Proteins; 2007 Mar; 66(4):824-37. PubMed ID: 17154422 [TBL] [Abstract][Full Text] [Related]
19. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Hooft RW; Sander C; Vriend G Proteins; 1996 Dec; 26(4):363-76. PubMed ID: 8990493 [TBL] [Abstract][Full Text] [Related]
20. Understanding water: molecular dynamics simulations of myoglobin. Gu W; Garcia AE; Schoenborn BP Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]