These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 137307)

  • 41. Minimum inhibitory concentration of surfactants for plaque antiadherents.
    Lim JK; Smith S; McGlothlin J; Gerencser VF
    Caries Res; 1982; 16(6):440-2. PubMed ID: 6959696
    [No Abstract]   [Full Text] [Related]  

  • 42. Effects of bactericidal treatments on bacterial adherence and dental plaque formation.
    Orstavik D; Ruangsri P
    Scand J Dent Res; 1979 Aug; 87(4):296-301. PubMed ID: 295489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular basis of bacterial adhesion in the oral cavity.
    Mergenhagen SE; Sandberg AL; Chassy BM; Brennan MJ; Yeung MK; Donkersloot JA; Cisar JO
    Rev Infect Dis; 1987; 9 Suppl 5():S467-74. PubMed ID: 2891180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uptake of fluoride and its inhibitory effects in oral microorganisms in culture.
    Edgar WM; Cockburn MA; Jenkins GN
    Arch Oral Biol; 1981; 26(7):615-23. PubMed ID: 6947766
    [No Abstract]   [Full Text] [Related]  

  • 45. The effect of media containing sucrose and its constituent monosaccharides on the ability of streptococci to form dental plaque-like deposits on nichrome steel wire in vitro.
    Dummer PM; Green RM
    Arch Oral Biol; 1981; 26(5):453-5. PubMed ID: 6947746
    [No Abstract]   [Full Text] [Related]  

  • 46. Factors affecting the stability of the resident dental plaque microflora of specific pathogen-free rats in relation to the ability to resist colonization by Streptococcus mutans.
    van der Hoeven JS; Rogers AH
    Arch Oral Biol; 1979; 24(10-11):787-90. PubMed ID: 161701
    [No Abstract]   [Full Text] [Related]  

  • 47. Establishment of potentially cariogenic streptococci in an experimental human plaque. I: Streptococcus mutans.
    Borden LW; Ostrom CA; Koulourides T
    J Dent Res; 1980 Mar; 59(3):588-93. PubMed ID: 6937491
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Streptococcus sanguis: a model in the application in immunochemical analysis for the in situ localization of bacteria in dental plaque.
    Rosan B; Lai CH; Listgarten MA
    J Dent Res; 1976 Jan; 55():A124-41. PubMed ID: 812892
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural requirements of guanide, biguanide, and bisbiguanide agents for antiplaque activity.
    Tanzer JM; Slee AM; Kamay BA
    Antimicrob Agents Chemother; 1977 Dec; 12(6):721-9. PubMed ID: 931371
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The effect of zinc chloride mouthwashes on caries-inducing plaque streptococci. 1. In vitro research on the antimicrobial efficacy of zinc chloride on reference strains of Streptococcus mutans (BHT), Streptococcus sanguis (HKop) and Streptococcus salivarius (NCTN 8618)].
    Nossek H; Dobl P
    Zahn Mund Kieferheilkd Zentralbl; 1990; 78(4):325-8. PubMed ID: 2146832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cultural and electronmicroscopic studies of the effect of penicillin on tolerant oral streptococci.
    Holbrook WP; Kristinsson KG; Carley AJ; Gunnarsdóttir S
    J Med Microbiol; 1989 Dec; 30(4):267-72. PubMed ID: 2600959
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intergeneric bacterial coaggregations involving mutans streptococci and oral actinomyces.
    Crowley PJ; Fischlschweiger W; Coleman SE; Bleiweis AS
    Infect Immun; 1987 Nov; 55(11):2695-700. PubMed ID: 3117688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of subinhibitory concentrations of chemical agents on hydrophobicity and in vitro adherence of Streptococcus mutans and Streptococcus sanguis.
    Cai S; Simionato MR; Mayer MP; Novo NF; Zelante F
    Caries Res; 1994; 28(5):335-41. PubMed ID: 8001055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. pH change in artificial dental plaque formed by glucosyltransferase and some oral bacteria during batch and continuous culture.
    Takehara T; Itoh M; Hanada N; Saeki E
    J Dent Res; 1985 Mar; 64(3):447-9. PubMed ID: 3156164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron microscopic study of the interaction of oral microorganisms with polymorphonuclear leukocytes.
    Baehni P; Listgarten MA; Taichman NS; McArthur WP
    Arch Oral Biol; 1977; 22(12):685-92. PubMed ID: 272141
    [No Abstract]   [Full Text] [Related]  

  • 56. Antibacterial action of dental cements: an in vitro study.
    Morrier JJ; Rocca JP; Barsotti O
    Bull Group Int Rech Sci Stomatol Odontol; 1995; 38(3-4):87-93. PubMed ID: 7492899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lysis of Streptococcus sanguis by an extracellular enzyme from the bacterium Streptococcus mutans from human dental plaque.
    Baba H
    Arch Oral Biol; 1986; 31(12):849-53. PubMed ID: 3479961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antagonistic substances produced by streptococci from human dental plaque and their significance in plaque ecology.
    Weerkamp A; Vogels GD; Skotnicki M
    Caries Res; 1977; 11(5):245-56. PubMed ID: 267511
    [No Abstract]   [Full Text] [Related]  

  • 59. Haemagglutination activity of plaque-forming bacteria.
    Rölla G; Kilian M
    Caries Res; 1977; 11(2):85-9. PubMed ID: 403006
    [No Abstract]   [Full Text] [Related]  

  • 60. Cariogenic potential of lactosylfructoside as determined by acidogenicity of oral streptococci in vitro and human dental plaque in situ.
    Hata S; Mayanagi H
    Caries Res; 2001; 35(5):338-43. PubMed ID: 11641569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.