These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 1373245)
1. The roles of ionic processes in muscular fatigue during intense exercise. McKenna MJ Sports Med; 1992 Feb; 13(2):134-45. PubMed ID: 1373245 [TBL] [Abstract][Full Text] [Related]
2. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. McKenna MJ; Bangsbo J; Renaud JM J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569 [TBL] [Abstract][Full Text] [Related]
3. Potassium regulation during exercise and recovery. Lindinger MI; Sjøgaard G Sports Med; 1991 Jun; 11(6):382-401. PubMed ID: 1656509 [TBL] [Abstract][Full Text] [Related]
4. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Sejersted OM; Sjøgaard G Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of muscle fatigue in intense exercise. Green HJ J Sports Sci; 1997 Jun; 15(3):247-56. PubMed ID: 9232550 [TBL] [Abstract][Full Text] [Related]
6. The roles of ion fluxes in skeletal muscle fatigue. Lindinger MI; Heigenhauser GJ Can J Physiol Pharmacol; 1991 Feb; 69(2):246-53. PubMed ID: 2054741 [TBL] [Abstract][Full Text] [Related]
7. Plasma K+ dynamics and implications during and following intense rowing exercise. Atanasovska T; Petersen AC; Rouffet DM; Billaut F; Ng I; McKenna MJ J Appl Physiol (1985); 2014 Jul; 117(1):60-8. PubMed ID: 24812644 [TBL] [Abstract][Full Text] [Related]
8. Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport. Nielsen OB; Overgaard K Acta Physiol Scand; 1996 Mar; 156(3):247-56. PubMed ID: 8729684 [TBL] [Abstract][Full Text] [Related]
9. Water and electrolyte fluxes during exercise and their relation to muscle fatigue. Sjøgaard G Acta Physiol Scand Suppl; 1986; 556():129-36. PubMed ID: 3471050 [TBL] [Abstract][Full Text] [Related]
10. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Degroot M; Massie BM; Boska M; Gober J; Miller RG; Weiner MW Muscle Nerve; 1993 Jan; 16(1):91-8. PubMed ID: 8423837 [TBL] [Abstract][Full Text] [Related]
12. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. McKenna MJ; Harmer AR; Fraser SF; Li JL Acta Physiol Scand; 1996 Mar; 156(3):335-46. PubMed ID: 8729694 [TBL] [Abstract][Full Text] [Related]
13. Biochemical correlates of fatigue. A brief review. Vøllestad NK; Sejersted OM Eur J Appl Physiol Occup Physiol; 1988; 57(3):336-47. PubMed ID: 3286252 [TBL] [Abstract][Full Text] [Related]
14. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. McKenna MJ; Medved I; Goodman CA; Brown MJ; Bjorksten AR; Murphy KT; Petersen AC; Sostaric S; Gong X J Physiol; 2006 Oct; 576(Pt 1):279-88. PubMed ID: 16840514 [TBL] [Abstract][Full Text] [Related]
15. Influence of severe potassium depletion and subsequent repletion with potassium on muscle electrolytes, metabolites and amino acids in man. Bergström J; Alvestrand A; Fürst P; Hultman E; Sahlin K; Vinnars E; Widström A Clin Sci Mol Med; 1976 Dec; 51(6):589-99. PubMed ID: 1070423 [TBL] [Abstract][Full Text] [Related]
19. K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation? Lindinger MI; McKelvie RS; Heigenhauser GJ J Appl Physiol (1985); 1995 Mar; 78(3):765-77. PubMed ID: 7775317 [TBL] [Abstract][Full Text] [Related]