BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 1373245)

  • 1. The roles of ionic processes in muscular fatigue during intense exercise.
    McKenna MJ
    Sports Med; 1992 Feb; 13(2):134-45. PubMed ID: 1373245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium regulation during exercise and recovery.
    Lindinger MI; Sjøgaard G
    Sports Med; 1991 Jun; 11(6):382-401. PubMed ID: 1656509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of muscle fatigue in intense exercise.
    Green HJ
    J Sports Sci; 1997 Jun; 15(3):247-56. PubMed ID: 9232550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of ion fluxes in skeletal muscle fatigue.
    Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):246-53. PubMed ID: 2054741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma K+ dynamics and implications during and following intense rowing exercise.
    Atanasovska T; Petersen AC; Rouffet DM; Billaut F; Ng I; McKenna MJ
    J Appl Physiol (1985); 2014 Jul; 117(1):60-8. PubMed ID: 24812644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport.
    Nielsen OB; Overgaard K
    Acta Physiol Scand; 1996 Mar; 156(3):247-56. PubMed ID: 8729684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water and electrolyte fluxes during exercise and their relation to muscle fatigue.
    Sjøgaard G
    Acta Physiol Scand Suppl; 1986; 556():129-36. PubMed ID: 3471050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR.
    Degroot M; Massie BM; Boska M; Gober J; Miller RG; Weiner MW
    Muscle Nerve; 1993 Jan; 16(1):91-8. PubMed ID: 8423837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise.
    McKenna MJ; Harmer AR; Fraser SF; Li JL
    Acta Physiol Scand; 1996 Mar; 156(3):335-46. PubMed ID: 8729694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical correlates of fatigue. A brief review.
    Vøllestad NK; Sejersted OM
    Eur J Appl Physiol Occup Physiol; 1988; 57(3):336-47. PubMed ID: 3286252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans.
    McKenna MJ; Medved I; Goodman CA; Brown MJ; Bjorksten AR; Murphy KT; Petersen AC; Sostaric S; Gong X
    J Physiol; 2006 Oct; 576(Pt 1):279-88. PubMed ID: 16840514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of severe potassium depletion and subsequent repletion with potassium on muscle electrolytes, metabolites and amino acids in man.
    Bergström J; Alvestrand A; Fürst P; Hultman E; Sahlin K; Vinnars E; Widström A
    Clin Sci Mol Med; 1976 Dec; 51(6):589-99. PubMed ID: 1070423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise.
    Sostaric SM; Skinner SL; Brown MJ; Sangkabutra T; Medved I; Medley T; Selig SE; Fairweather I; Rutar D; McKenna MJ
    J Physiol; 2006 Jan; 570(Pt 1):185-205. PubMed ID: 16239279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle function: role of ionic changes in fatigue, damage and disease.
    Allen DG
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle fatigue and lactic acid accumulation.
    Sahlin K
    Acta Physiol Scand Suppl; 1986; 556():83-91. PubMed ID: 3471061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation?
    Lindinger MI; McKelvie RS; Heigenhauser GJ
    J Appl Physiol (1985); 1995 Mar; 78(3):765-77. PubMed ID: 7775317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle metabolism during fatigue and work.
    Layzer RB
    Baillieres Clin Endocrinol Metab; 1990 Sep; 4(3):441-59. PubMed ID: 2268224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.