These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 1373245)

  • 21. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of Na+-K+ homeostasis and excitability in contracting muscles: implications for fatigue.
    Nielsen OB; de Paoli FV
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):974-84. PubMed ID: 18059624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of excitation-contraction coupling in muscle fatigue.
    Allen DG; Westerblad H; Lee JA; Lännergren J
    Sports Med; 1992 Feb; 13(2):116-26. PubMed ID: 1313991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles.
    Broch-Lips M; Overgaard K; Praetorius HA; Nielsen OB
    J Appl Physiol (1985); 2007 Aug; 103(2):494-503. PubMed ID: 17446415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactic acid and exercise performance : culprit or friend?
    Cairns SP
    Sports Med; 2006; 36(4):279-91. PubMed ID: 16573355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscular function, metabolism and electrolyte shifts during prolonged repetitive exercise in humans.
    Vøollestad NK; Verburg E
    Acta Physiol Scand; 1996 Mar; 156(3):271-8. PubMed ID: 8729687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump?
    Verburg E; Hallén J; Sejersted OM; Vøllestad NK
    Acta Physiol Scand; 1999 Apr; 165(4):357-67. PubMed ID: 10350230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic factors in fatigue.
    Sahlin K
    Sports Med; 1992 Feb; 13(2):99-107. PubMed ID: 1561513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition.
    Crecelius AR; Kirby BS; Hearon CM; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2015 Jun; 593(12):2735-51. PubMed ID: 25893955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle.
    Usher-Smith JA; Fraser JA; Huang CL; Skepper JN
    J Muscle Res Cell Motil; 2007; 28(1):19-28. PubMed ID: 17333488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review.
    Sjøgaard G
    Can J Physiol Pharmacol; 1991 Feb; 69(2):238-45. PubMed ID: 2054740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of exertional fatigue in muscle glycogenoses.
    Vissing J; Haller RG
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S168-71. PubMed ID: 23182633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical adaptations to training: implications for resisting muscle fatigue.
    McCully KK; Clark BJ; Kent JA; Wilson J; Chance B
    Can J Physiol Pharmacol; 1991 Feb; 69(2):274-8. PubMed ID: 2054744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of contraction on lymphatic, venous, and tissue electr-lytes and metabolites in rabbit skeletal muscle.
    Tibes U; Haberkorn-Butendeich E; Hammersen F
    Pflugers Arch; 1977 Apr; 368(3):195-202. PubMed ID: 559290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatigue and phosphocreatine depletion during carbon dioxide-induced acidosis in rat muscle.
    Sahlin K; Edström L; Sjöholm H
    Am J Physiol; 1983 Jul; 245(1):C15-20. PubMed ID: 6408927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures.
    Jauchem JR; Sherry CJ; Fines DA; Cook MC
    Forensic Sci Int; 2006 Aug; 161(1):20-30. PubMed ID: 16289999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle water and electrolytes following varied levels of dehydration in man.
    Costill DL; Coté R; Fink W
    J Appl Physiol; 1976 Jan; 40(1):6-11. PubMed ID: 1248983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Skeletal Muscle Carnosine Content on Fatigue during Repeated Resistance Exercise in Recreationally Active Women.
    Varanoske AN; Hoffman JR; Church DD; Wang R; Baker KM; Dodd SJ; Coker NA; Oliveira LP; Dawson VL; Fukuda DH; Stout JR
    Nutrients; 2017 Sep; 9(9):. PubMed ID: 28880219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.