These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1373324)

  • 1. Changes at the N-terminus of human brain creatine kinase during a transition between inactive folding intermediate and active enzyme.
    Morris GE; Man NT
    Biochim Biophys Acta; 1992 Apr; 1120(2):233-8. PubMed ID: 1373324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in the C-terminal region of human brain creatine kinase studied with monoclonal antibodies.
    Nguyen thi Man ; Cartwright AJ; Osborne M; Morris GE
    Biochim Biophys Acta; 1991 Jan; 1076(2):245-51. PubMed ID: 1705443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibody studies of creatine kinase. The ART epitope: evidence for an intermediate in protein folding.
    Morris GE
    Biochem J; 1989 Jan; 257(2):461-9. PubMed ID: 2467657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoclonal antibody studies suggest a catalytic site at the interface between domains in creatine kinase.
    Morris GE; Cartwright AJ
    Biochim Biophys Acta; 1990 Jul; 1039(3):318-22. PubMed ID: 1696130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoclonal antibody studies of creatine kinase. Antibody-binding sites in the N-terminal region of creatine kinase and effects of antibody on enzyme refolding.
    Morris GE; Frost LC; Newport PA; Hudson N
    Biochem J; 1987 Nov; 248(1):53-9. PubMed ID: 3435448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of human muscle creatine kinase with glutaraldehyde preferentially increases the immunogenicity of the native conformation and permits production of high-affinity monoclonal antibodies which recognize two distinct surface epitopes.
    Man N; Cartwright AJ; Andrews KM; Morris GE
    J Immunol Methods; 1989 Dec; 125(1-2):251-9. PubMed ID: 2481696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoenzyme-directed selection and characterization of anti-creatine kinase single chain Fv antibodies from a human phage display library.
    Schlattner U; Reinhart C; Hornemann T; Tokarska-Schlattner M; Wallimann T
    Biochim Biophys Acta; 2002 Dec; 1579(2-3):124-32. PubMed ID: 12427547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Zn2+ during reactivation and refolding of urea-denatured creatine kinase.
    Li S; Xu Z; Zhou HM
    Biochemistry (Mosc); 2002 Jul; 67(7):753-60. PubMed ID: 12139472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between kinetic and equilibrium folding intermediates of creatine kinase.
    Zhu L; Fan YX; Perrett S; Zhou JM
    Biochem Biophys Res Commun; 2001 Jul; 285(4):857-62. PubMed ID: 11467829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of C-terminal sequences in the folding of muscle creatine kinase.
    Mazon H; Marcillat O; Vial C; Clottes E
    Biochemistry; 2002 Jul; 41(30):9646-53. PubMed ID: 12135386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification by protein microsequencing of a proteinase-V8-cleavage site in a folding intermediate of chick muscle creatine kinase.
    Morris GE; Jackson PJ
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):809-11. PubMed ID: 1684894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of active octameric mitochondrial creatine kinase from two genetically engineered fragments.
    Gross M; Wyss M; Furter-Graves EM; Wallimann T; Furter R
    Protein Sci; 1996 Feb; 5(2):320-30. PubMed ID: 8745410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates.
    Wyss M; James P; Schlegel J; Wallimann T
    Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding pathway for partially folded rabbit muscle creatine kinase.
    Park YD; Ou WB; Yu TW; Zhou HM
    Biochem Cell Biol; 2001; 79(4):479-87. PubMed ID: 11527217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway.
    Mu H; Zhou SM; Yang JM; Meng FG; Park YD
    Int J Biol Macromol; 2007 Oct; 41(4):439-46. PubMed ID: 17673285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone-like activity of peptidyl-prolyl cis-trans isomerase during creatine kinase refolding.
    Ou WB; Luo W; Park YD; Zhou HM
    Protein Sci; 2001 Nov; 10(11):2346-53. PubMed ID: 11604540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct antigenic features of linear epitopes at the N-terminus and C-terminus of 65 kDa glutamic acid decarboxylase (GAD65): implications for autoantigen modification during pathogenesis.
    Al-Bukhari TA; Radford PM; Bouras G; Davenport C; Trigwell SM; Bottazzo GF; Lai M; Schwartz HL; Tighe PJ; Todd I
    Clin Exp Immunol; 2002 Oct; 130(1):131-9. PubMed ID: 12296864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivation and refolding of a partially folded creatine kinase modified by 5,5'-dithio-bis(2-nitrobenzoic acid).
    Yang Y; Park YD; Yu TW; Zhou HM
    Biochem Biophys Res Commun; 1999 Jun; 259(2):450-4. PubMed ID: 10362528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of the conserved Asp122 in the linker impedes creatine kinase reactivation and refolding.
    Liu YM; Feng S; Ding XL; Kang CF; Yan YB
    Int J Biol Macromol; 2009 Apr; 44(3):271-7. PubMed ID: 19263506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.