BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 1373376)

  • 1. Regulation of polyadenylation in human immunodeficiency virus (HIV): contributions of promoter proximity and upstream sequences.
    Cherrington J; Ganem D
    EMBO J; 1992 Apr; 11(4):1513-24. PubMed ID: 1373376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative roles of signals upstream of AAUAAA and promoter proximity in regulation of human immunodeficiency virus type 1 mRNA 3' end formation.
    DeZazzo JD; Scott JM; Imperiale MJ
    Mol Cell Biol; 1992 Dec; 12(12):5555-62. PubMed ID: 1360144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elements upstream of the AAUAAA within the human immunodeficiency virus polyadenylation signal are required for efficient polyadenylation in vitro.
    Valsamakis A; Schek N; Alwine JC
    Mol Cell Biol; 1992 Sep; 12(9):3699-705. PubMed ID: 1508176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common mechanism for the enhancement of mRNA 3' processing by U3 sequences in two distantly related lentiviruses.
    Graveley BR; Gilmartin GM
    J Virol; 1996 Mar; 70(3):1612-7. PubMed ID: 8627681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upstream sequences and cap proximity in the regulation of polyadenylation in ground squirrel hepatitis virus.
    Cherrington J; Russnak R; Ganem D
    J Virol; 1992 Dec; 66(12):7589-96. PubMed ID: 1279209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An RNA secondary structure juxtaposes two remote genetic signals for human T-cell leukemia virus type I RNA 3'-end processing.
    Bar-Shira A; Panet A; Honigman A
    J Virol; 1991 Oct; 65(10):5165-73. PubMed ID: 1716687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site.
    Ashe MP; Griffin P; James W; Proudfoot NJ
    Genes Dev; 1995 Dec; 9(23):3008-25. PubMed ID: 7498796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter-proximal poly(A) sites are processed efficiently, but the RNA products are unstable in the nucleus.
    Scott JM; Imperiale MJ
    Mol Cell Biol; 1997 Apr; 17(4):2127-35. PubMed ID: 9121461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription termination and polyadenylation in retroviruses.
    Guntaka RV
    Microbiol Rev; 1993 Sep; 57(3):511-21. PubMed ID: 7902524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of polyadenylation signals generates murine retroviruses that produce fused virus-cell RNA transcripts at high frequency.
    Zhang QY; Clausen PA; Yatsula BA; Calothy G; Blair DG
    Virology; 1998 Feb; 241(1):80-93. PubMed ID: 9454719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites.
    Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1994 Jul; 14(7):4682-93. PubMed ID: 7911973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of HIV-1 pre-mRNA 3' processing in vitro requires both an upstream element and TAR.
    Gilmartin GM; Fleming ES; Oetjen J
    EMBO J; 1992 Dec; 11(12):4419-28. PubMed ID: 1425577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signal.
    Sanfaçon H; Hohn T
    Nature; 1990 Jul; 346(6279):81-4. PubMed ID: 2366867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses.
    Schek N; Cooke C; Alwine JC
    Mol Cell Biol; 1992 Dec; 12(12):5386-93. PubMed ID: 1333042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the polyomavirus late polyadenylation signal.
    Batt DB; Carmichael GG
    Mol Cell Biol; 1995 Sep; 15(9):4783-90. PubMed ID: 7651395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tat-dependent occlusion of the HIV poly(A) site.
    Weichs an der Glon C; Ashe M; Eggermont J; Proudfoot NJ
    EMBO J; 1993 May; 12(5):2119-28. PubMed ID: 8491200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The retroviruses human immunodeficiency virus type 1 and Moloney murine leukemia virus adopt radically different strategies to regulate promoter-proximal polyadenylation.
    Furger A; Monks J; Proudfoot NJ
    J Virol; 2001 Dec; 75(23):11735-46. PubMed ID: 11689654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different sequence elements are required for function of the cauliflower mosaic virus polyadenylation site in Saccharomyces cerevisiae compared with in plants.
    Irniger S; Sanfaçon H; Egli CM; Braus GH
    Mol Cell Biol; 1992 May; 12(5):2322-30. PubMed ID: 1373813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition.
    Gilmartin GM; Fleming ES; Oetjen J; Graveley BR
    Genes Dev; 1995 Jan; 9(1):72-83. PubMed ID: 7828853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure.
    Klasens BI; Thiesen M; Virtanen A; Berkhout B
    Nucleic Acids Res; 1999 Jan; 27(2):446-54. PubMed ID: 9862964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.