These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 1373440)
1. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Büschges A; Ramirez JM; Driesang R; Pearson KG J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440 [TBL] [Abstract][Full Text] [Related]
2. Reorganization of sensory regulation of locust flight after partial deafferentation. Büschges A; Ramirez JM; Pearson KG J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454 [TBL] [Abstract][Full Text] [Related]
3. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system. Wolf H; Büschges A J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419 [TBL] [Abstract][Full Text] [Related]
4. Interneurons in the flight system of the locust: distribution, connections, and resetting properties. Robertson RM; Pearson KG J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764 [TBL] [Abstract][Full Text] [Related]
5. Alteration of bursting properties in interneurons during locust flight. Ramirez JM; Pearson KG J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976 [TBL] [Abstract][Full Text] [Related]
6. Projections of the wing stretch receptors to central flight neurons in the locust. Reye DN; Pearson KG J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248 [TBL] [Abstract][Full Text] [Related]
7. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli. Ando N; Wang H; Shirai K; Kiguchi K; Kanzaki R J Insect Physiol; 2011 Nov; 57(11):1518-36. PubMed ID: 21867710 [TBL] [Abstract][Full Text] [Related]
8. Proprioceptive input patterns elevator activity in the locust flight system. Wolf H; Pearson KG J Neurophysiol; 1988 Jun; 59(6):1831-53. PubMed ID: 3404207 [TBL] [Abstract][Full Text] [Related]
9. Phase-dependent presynaptic modulation of mechanosensory signals in the locust flight system. Büschges A; Wolf H J Neurophysiol; 1999 Feb; 81(2):959-62. PubMed ID: 10036295 [TBL] [Abstract][Full Text] [Related]
10. Octopaminergic modulation of interneurons in the flight system of the locust. Ramirez JM; Pearson KG J Neurophysiol; 1991 Nov; 66(5):1522-37. PubMed ID: 1765792 [TBL] [Abstract][Full Text] [Related]
11. Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust. Ramirez JM; Pearson KG J Neurobiol; 1988 Apr; 19(3):257-82. PubMed ID: 3373206 [TBL] [Abstract][Full Text] [Related]
12. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
13. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. Burrows M; Newland PL J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052 [TBL] [Abstract][Full Text] [Related]
14. Neural correlates to flight-related density-dependent phase characteristics in locusts. Fuchs E; Kutsch W; Ayali A J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281 [TBL] [Abstract][Full Text] [Related]
15. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells. Arbas EA J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070 [TBL] [Abstract][Full Text] [Related]
16. Chemical deafferentation of the locust flight system by phentolamine. Ramirez JM; Pearson KG J Comp Physiol A; 1990 Sep; 167(4):485-94. PubMed ID: 2175355 [TBL] [Abstract][Full Text] [Related]
17. Octopaminergic modulation of synaptic transmission between an identified sensory afferent and flight motoneuron in the locust. Leitch B; Judge S; Pitman RM J Comp Neurol; 2003 Jul; 462(1):55-70. PubMed ID: 12761824 [TBL] [Abstract][Full Text] [Related]
18. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Wang JK; Sun M J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955 [TBL] [Abstract][Full Text] [Related]
19. Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. Burrows M J Exp Biol; 1975 Feb; 62(1):189-219. PubMed ID: 168304 [TBL] [Abstract][Full Text] [Related]
20. The locust wing hinge stretch receptors. I. Primary sensory neurones with enormous central arborizations. Altman JS; Tyrer NM J Comp Neurol; 1977 Apr; 172(3):409-30. PubMed ID: 838886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]