BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 1374068)

  • 1. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ; Paggi P; Katz MJ
    J Cell Biol; 1992 May; 117(3):607-16. PubMed ID: 1374068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged.
    Lasek RJ; Paggi P; Katz MJ
    Brain Res; 1993 Jul; 616(1-2):58-64. PubMed ID: 7689412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal transport of neurofilaments: a single population of intermittently moving polymers.
    Li Y; Jung P; Brown A
    J Neurosci; 2012 Jan; 32(2):746-58. PubMed ID: 22238110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE; Nixon RA
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.
    McQuarrie IG; Brady ST; Lasek RJ
    J Neurosci; 1986 Jun; 6(6):1593-605. PubMed ID: 2423662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [32P]orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo.
    Nixon RA; Lewis SE; Mercken M; Sihag RK
    Neurochem Res; 1994 Nov; 19(11):1445-53. PubMed ID: 7534878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons.
    Nixon RA; Brown BA; Marotta CA
    J Cell Biol; 1982 Jul; 94(1):150-8. PubMed ID: 6181078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons.
    Yuan A; Sasaki T; Rao MV; Kumar A; Kanumuri V; Dunlop DS; Liem RK; Nixon RA
    J Neurosci; 2009 Sep; 29(36):11316-29. PubMed ID: 19741138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow component B protein kinetics in optic nerve and tract windows.
    Paggi P; Lasek RJ; Katz MJ
    Brain Res; 1989 Dec; 504(2):223-30. PubMed ID: 2480832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells.
    Oblinger MM; Lasek RJ
    J Neurosci; 1988 May; 8(5):1747-58. PubMed ID: 3130470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible mechanism for neurofilament slowing down in myelinated axon: Phosphorylation-induced variation of NF kinetics.
    Jia Z; Li Y
    PLoS One; 2021; 16(3):e0247656. PubMed ID: 33711034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical comparison between Nixon-Logvinenko's and Jung-Brown's theories of slow neurofilament transport in axons.
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2013 Oct; 245(2):331-9. PubMed ID: 23958382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.
    Pijak DS; Hall GF; Tenicki PJ; Boulos AS; Lurie DI; Selzer ME
    J Comp Neurol; 1996 May; 368(4):569-81. PubMed ID: 8744444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA; Lewis SE; Dahl D; Marotta CA; Drager UC
    Brain Res Mol Brain Res; 1989 Mar; 5(2):93-108. PubMed ID: 2469928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport.
    Roy S; Coffee P; Smith G; Liem RK; Brady ST; Black MM
    J Neurosci; 2000 Sep; 20(18):6849-61. PubMed ID: 10995829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference with kinesin-based anterograde neurofilament axonal transport increases neurofilament-neurofilament bundling.
    Sunil N; Lee S; Shea TB
    Cytoskeleton (Hoboken); 2012 Jun; 69(6):371-9. PubMed ID: 22434685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective impairment of slow axonal transport after optic nerve injury in adult rats.
    McKerracher L; Vidal-Sanz M; Essagian C; Aguayo AJ
    J Neurosci; 1990 Aug; 10(8):2834-41. PubMed ID: 1696983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: regulation by multiple phosphorylation events.
    Motil J; Chan WK; Dubey M; Chaudhury P; Pimenta A; Chylinski TM; Ortiz DT; Shea TB
    Cell Motil Cytoskeleton; 2006 May; 63(5):266-86. PubMed ID: 16570247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow components of axonal transport: two cytoskeletal networks.
    Black MM; Lasek RJ
    J Cell Biol; 1980 Aug; 86(2):616-23. PubMed ID: 6156946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.