BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 1374068)

  • 21. Axonal transport of actin: slow component b is the principal source of actin for the axon.
    Black MM; Lasek RJ
    Brain Res; 1979 Aug; 171(3):401-13. PubMed ID: 89886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant axonal neuropathy: acceleration of neurofilament transport in optic axons.
    Monaco S; Autilio-Gambetti L; Zabel D; Gambetti P
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):920-4. PubMed ID: 2579382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit.
    Jung C; Lee S; Ortiz D; Zhu Q; Julien JP; Shea TB
    Brain Res Mol Brain Res; 2005 Nov; 141(2):151-5. PubMed ID: 16246456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity.
    Jung C; Yabe JT; Shea TB
    Brain Res; 2000 Feb; 856(1-2):12-9. PubMed ID: 10677606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ.
    Jung C; Shea TB
    Cell Motil Cytoskeleton; 1999; 42(3):230-40. PubMed ID: 10098936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density.
    Rao MV; Engle LJ; Mohan PS; Yuan A; Qiu D; Cataldo A; Hassinger L; Jacobsen S; Lee VM; Andreadis A; Julien JP; Bridgman PC; Nixon RA
    J Cell Biol; 2002 Oct; 159(2):279-90. PubMed ID: 12403814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons.
    Brown BA; Nixon RA; Marotta CA
    J Cell Biol; 1982 Jul; 94(1):159-64. PubMed ID: 6181079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons.
    Nixon RA; Logvinenko KB
    J Cell Biol; 1986 Feb; 102(2):647-59. PubMed ID: 2418034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axonal transport of cytoskeletal proteins in oculomotor axons and their residence times in the axon terminals.
    Paggi P; Lasek RJ
    J Neurosci; 1987 Aug; 7(8):2397-411. PubMed ID: 2441008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local modulation of Neurofilament transport at Nodes of Ranvier.
    Jia Z; Li Y
    Biomed Phys Eng Express; 2020 Sep; 6(5):055025. PubMed ID: 33444256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.
    Nixon RA; Paskevich PA; Sihag RK; Thayer CY
    J Cell Biol; 1994 Aug; 126(4):1031-46. PubMed ID: 7519617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytomatrix protein residence times differ significantly between the tract and the terminal segments of optic axons.
    Paggi P; Lasek RJ; Katz MJ
    Brain Res; 1990 May; 517(1-2):143-50. PubMed ID: 1695860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of Axonal Neurofilament Content from Its Transport Rate.
    Yuan A; Hassinger L; Rao MV; Julien JP; Miller CC; Nixon RA
    PLoS One; 2015; 10(7):e0133848. PubMed ID: 26208164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurofilaments are prominent in bullfrog olfactory axons but are rarely seen in those of the tiger salamander, Ambystoma tigrinum.
    Burton PR; Wentz MA
    J Comp Neurol; 1992 Mar; 317(4):396-406. PubMed ID: 1578003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurofilaments of Klotho, the mutant mouse prematurely displaying symptoms resembling human aging.
    Uchida A; Komiya Y; Tashiro T; Yorifuji H; Kishimoto T; Nabeshima Y; Hisanaga S
    J Neurosci Res; 2001 May; 64(4):364-70. PubMed ID: 11340643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow component of axonal transport is impaired in the proximal axon of transgenic mice with a G93A mutant SOD1 gene.
    Sasaki S; Warita H; Abe K; Iwata M
    Acta Neuropathol; 2004 May; 107(5):452-60. PubMed ID: 15029446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of proteins in normal and regenerating goldfish optic nerve.
    Larrivee DC; Grafstein B
    J Neurochem; 1987 Dec; 49(6):1747-57. PubMed ID: 3681293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons.
    Shea TB; Yabe JT; Ortiz D; Pimenta A; Loomis P; Goldman RD; Amin N; Pant HC
    J Cell Sci; 2004 Feb; 117(Pt 6):933-41. PubMed ID: 14762105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurofilaments are non-essential elements of toxicant-induced reductions in fast axonal transport: pulse labeling in CNS neurons.
    Stone JD; Peterson AP; Eyer J; Sickles DW
    Neurotoxicology; 2000 Aug; 21(4):447-57. PubMed ID: 11022855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium/calmodulin-dependent protein kinase IIalpha in optic axons moves with slow axonal transport and undergoes posttranslational modification.
    Lund LM; McQuarrie IG
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1157-61. PubMed ID: 11741313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.