These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 1374417)

  • 1. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum.
    Roitelman J; Olender EH; Bar-Nun S; Dunn WA; Simoni RD
    J Cell Biol; 1992 Jun; 117(5):959-73. PubMed ID: 1374417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dissection of the role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Kumagai H; Chun KT; Simoni RD
    J Biol Chem; 1995 Aug; 270(32):19107-13. PubMed ID: 7642576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibition of degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase by sterol regulatory element binding protein cleavage-activating protein requires four phenylalanine residues in span 6 of HMG-CoA reductase transmembrane domain.
    Xu L; Simoni RD
    Arch Biochem Biophys; 2003 Jun; 414(2):232-43. PubMed ID: 12781775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum.
    Chun KT; Bar-Nun S; Simoni RD
    J Biol Chem; 1990 Dec; 265(35):22004-10. PubMed ID: 2254343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation in the lumenal part of the membrane domain of HMG-CoA reductase alters its regulated degradation.
    Sekler MS; Simoni RD
    Biochem Biophys Res Commun; 1995 Jan; 206(1):186-93. PubMed ID: 7818519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Roitelman J; Simoni RD
    J Biol Chem; 1992 Dec; 267(35):25264-73. PubMed ID: 1460026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulated degradation of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase reporter construct occurs in the endoplasmic reticulum.
    Lecureux LW; Wattenberg BW
    J Cell Sci; 1994 Sep; 107 ( Pt 9)():2635-42. PubMed ID: 7844177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of calcium in the mevalonate-accelerated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Roitelman J; Bar-Nun S; Inoue S; Simoni RD
    J Biol Chem; 1991 Aug; 266(24):16085-91. PubMed ID: 1908464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitin is conjugated by membrane ubiquitin ligase to three sites, including the N terminus, in transmembrane region of mammalian 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for sterol-regulated enzyme degradation.
    Doolman R; Leichner GS; Avner R; Roitelman J
    J Biol Chem; 2004 Sep; 279(37):38184-93. PubMed ID: 15247208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo by cysteine protease inhibitors.
    Inoue S; Bar-Nun S; Roitelman J; Simoni RD
    J Biol Chem; 1991 Jul; 266(20):13311-7. PubMed ID: 1906466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Olender EH; Simon RD
    J Biol Chem; 1992 Feb; 267(6):4223-35. PubMed ID: 1740462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-sterol compounds that regulate cholesterogenesis. Analogues of farnesyl pyrophosphate reduce 3-hydroxy-3-methylglutaryl-coenzyme A reductase levels.
    Bradfute DL; Simoni RD
    J Biol Chem; 1994 Mar; 269(9):6645-50. PubMed ID: 8120018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-hydroxy-3-methylglutaryl coenzyme A reductase is sterol-dependently cleaved by cathepsin L-type cysteine protease in the isolated endoplasmic reticulum.
    Moriyama T; Wada M; Urade R; Kito M; Katunuma N; Ogawa T; Simoni RD
    Arch Biochem Biophys; 2001 Feb; 386(2):205-12. PubMed ID: 11368343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Chun KT; Simoni RD
    J Biol Chem; 1992 Feb; 267(6):4236-46. PubMed ID: 1740463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomerization state influences the degradation rate of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Cheng HH; Xu L; Kumagai H; Simoni RD
    J Biol Chem; 1999 Jun; 274(24):17171-8. PubMed ID: 10358074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase.
    Skalnik DG; Narita H; Kent C; Simoni RD
    J Biol Chem; 1988 May; 263(14):6836-41. PubMed ID: 2834394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in permeabilized cells.
    Meigs TE; Simoni RD
    J Biol Chem; 1992 Jul; 267(19):13547-52. PubMed ID: 1618856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein.
    Hampton RY; Gardner RG; Rine J
    Mol Biol Cell; 1996 Dec; 7(12):2029-44. PubMed ID: 8970163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of 3-hydroxy-3-methylglutaryl-CoA reductase in endoplasmic reticulum membranes is accelerated as a result of increased susceptibility to proteolysis.
    McGee TP; Cheng HH; Kumagai H; Omura S; Simoni RD
    J Biol Chem; 1996 Oct; 271(41):25630-8. PubMed ID: 8810339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of HMG-CoA reductase in vitro. Cleavage in the membrane domain by a membrane-bound cysteine protease.
    Moriyama T; Sather SK; McGee TP; Simoni RD
    J Biol Chem; 1998 Aug; 273(34):22037-43. PubMed ID: 9705346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.