These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 13749893)

  • 1. Enzymatic synthesis of the maltose analogues, glucosyl glucosamine, glucosyl N-acetyl-glucosamine and glucosyl 2-deoxyglucose by an extract of Neisseria perflava.
    SELINGER Z; SCHRAMM M
    J Biol Chem; 1961 Aug; 236():2183-5. PubMed ID: 13749893
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymic synthesis of 3-O-alpha-D-glucopyranosyl D-xylose.
    BARKER SA; STACEY M; STROUD DB
    Nature; 1961 Jan; 189():138. PubMed ID: 13687021
    [No Abstract]   [Full Text] [Related]  

  • 3. Amylosucrase from Neisseria polysaccharea: novel catalytic properties.
    Potocki de Montalk G; Remaud-Simeon M; Willemot RM; Sarçabal P; Planchot V; Monsan P
    FEBS Lett; 2000 Apr; 471(2-3):219-23. PubMed ID: 10767427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A TRANSGLUCOSYLASE OF STREPTOCOCCUS BOVIS.
    WALKER GJ
    Biochem J; 1965 Feb; 94(2):299-308. PubMed ID: 14346086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient one-pot enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase.
    Nakai H; Dilokpimol A; Abou Hachem M; Svensson B
    Carbohydr Res; 2010 May; 345(8):1061-4. PubMed ID: 20392438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis.
    Vigsnaes LK; Nakai H; Hemmingsen L; Andersen JM; Lahtinen SJ; Rasmussen LE; Hachem MA; Petersen BO; Duus JØ; Meyer AS; Licht TR; Svensson B
    Food Funct; 2013 Apr; 4(5):784-93. PubMed ID: 23580006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations on a strain of Neisseria meningitides in the presence of glucose and maltose. II. Studies with washed cells1.
    FITTING C; SCHERP HW
    J Bacteriol; 1952 Apr; 63(4):545-60. PubMed ID: 14938328
    [No Abstract]   [Full Text] [Related]  

  • 8. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport.
    Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983
    [No Abstract]   [Full Text] [Related]  

  • 9. Utilization of intravenously administered beta-cellobiose and maltose by young pigs.
    Andersen DW; Daabees TT; Applebaum AE; Filer LJ; Stegink LD
    J Nutr; 1983 May; 113(5):1039-45. PubMed ID: 6842298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relative permeability of lysosomes from Tetrahymena pyriformis to carbohydrates, lactate and the cryoprotective nonelectrolytes glycerol and dimethylsulphoxide.
    Lee D
    Biochim Biophys Acta; 1970 Sep; 211(3):550-4. PubMed ID: 5456981
    [No Abstract]   [Full Text] [Related]  

  • 11. THE DIGESTION AND ABSORPTION OF MALTOSE AND TREHALOSE BY THE INTACT RAT.
    DAHLQVIST A; THOMSON DL
    Acta Physiol Scand; 1963; 59():111-25. PubMed ID: 14065843
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure of the D-glucans produced by Neisseria perflava.
    MacKenzie CR; Perry MB; McDonald IJ; Johnson KG
    Can J Microbiol; 1978 Nov; 24(11):1419-22. PubMed ID: 743649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of action of chloramphenicol. V. Effect of chloramphenicol on polysaccharide synthesis by Neisseria perflava.
    HOPPS HE; WISSEMAN CL; HAHN FE
    Antibiot Chemother (Northfield); 1954 Aug; 4(8):857-8. PubMed ID: 24543210
    [No Abstract]   [Full Text] [Related]  

  • 14. Production of nigerose, nigerosyl glucose, and nigerosyl maltose by Acremonium sp. S4G13.
    Konishi Y; Shindo K
    Biosci Biotechnol Biochem; 1997 Mar; 61(3):439-42. PubMed ID: 9095549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme.
    Pan YT; Koroth Edavana V; Jourdian WJ; Edmondson R; Carroll JD; Pastuszak I; Elbein AD
    Eur J Biochem; 2004 Nov; 271(21):4259-69. PubMed ID: 15511231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CONVERSION OF DISACCHARIDES TO THE CORRESPONDING GLYCOSIDE-3-ULOSES BY INTACT CELLS OF AGROBACTERIUM TUMEFACIENS.
    FUKUI S; HOCHSTER RM
    Can J Biochem Physiol; 1963 Nov; 41():2363-71. PubMed ID: 14089536
    [No Abstract]   [Full Text] [Related]  

  • 17. [HEREDITARY SACCHAROSE AND ISOMALTOSE MALABSORPTION].
    PRADER A; AURICCHIO S; SEMENZA G
    Monatsschr Kinderheilkd (1902); 1964 Apr; 112():177-80. PubMed ID: 14203475
    [No Abstract]   [Full Text] [Related]  

  • 18. Simple syntheses of 4-O-glucosylated 1-deoxynojirimycins from maltose and cellobiose.
    Steiner AJ; Stütz AE
    Carbohydr Res; 2004 Oct; 339(15):2615-9. PubMed ID: 15476724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae.
    Thompson J; Robrish SA; Pikis A; Brust A; Lichtenthaler FW
    Carbohydr Res; 2001 Mar; 331(2):149-61. PubMed ID: 11322729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides.
    Nihira T; Saito Y; Kitaoka M; Otsubo K; Nakai H
    Carbohydr Res; 2012 Oct; 360():25-30. PubMed ID: 22940176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.