These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 137501)

  • 1. [Work physiological studies performed to optimate the lever propulsion and the seat position of a lever propelled wheelchair (author's transl)].
    Engel P; Neikes M; Bennedik K; Hildebrandt G; Rode FW
    Rehabilitation (Stuttg); 1976 Nov; 15(4):217-28. PubMed ID: 137501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Result of a user inquiry for the improvement of hand propelled wheelchairs (author's transl)].
    Blohmke F; Boenick U; Grazianski T; Nietert M
    Z Orthop Ihre Grenzgeb; 1975 Apr; 113(2):264-70. PubMed ID: 124521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seat height in handrim wheelchair propulsion.
    van der Woude LH; Veeger DJ; Rozendal RH; Sargeant TJ
    J Rehabil Res Dev; 1989; 26(4):31-50. PubMed ID: 2600867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency.
    van der Woude LH; Botden E; Vriend I; Veeger D
    J Rehabil Res Dev; 1997 Jul; 34(3):286-94. PubMed ID: 9239621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does lever length and the position of its axis of rotation influence human performance during lever wheelchair propulsion?
    Fiok K; Mróz A
    J Electromyogr Kinesiol; 2015 Oct; 25(5):824-32. PubMed ID: 26142018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface electromyography activity of trunk muscles during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Mercer JL; Boninger ML
    Clin Biomech (Bristol); 2006 Dec; 21(10):1032-41. PubMed ID: 16979271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of marginal wheelchair users.
    Perks BA; Mackintosh R; Stewart CP; Bardsley GI
    J Rehabil Res Dev; 1994 Nov; 31(4):297-302. PubMed ID: 7869277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On "impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults".
    Sprigle S
    Arch Phys Med Rehabil; 2009 Jul; 90(7):1073-5. PubMed ID: 19577018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of an inertial dynamometer to explore the design of children's wheelchairs.
    Jarvis S; Rolfe H
    Scand J Rehabil Med; 1982; 14(4):167-76. PubMed ID: 6217547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological evaluation of a newly designed lever mechanism for wheelchairs.
    van der Woude LH; Veeger HE; de Boer Y; Rozendal RH
    J Med Eng Technol; 1993; 17(6):232-40. PubMed ID: 8169940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion.
    Patterson P; Draper S
    Biomed Sci Instrum; 1997; 33():477-81. PubMed ID: 9731406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computerized wheelchair ergometer. Results of a comparison study.
    Veeger HE; van der Woude LH; Rozendal RH
    Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.