These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1375035)

  • 41. Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding.
    Quinton PM; Reddy MM
    Nature; 1992 Nov; 360(6399):79-81. PubMed ID: 1279436
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rectification of whole cell cystic fibrosis transmembrane conductance regulator chloride current.
    Overholt JL; Saulino A; Drumm ML; Harvey RD
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C636-46. PubMed ID: 7534982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel.
    Cheng SH; Rich DP; Marshall J; Gregory RJ; Welsh MJ; Smith AE
    Cell; 1991 Sep; 66(5):1027-36. PubMed ID: 1716180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism.
    Venglarik CJ; Schultz BD; Frizzell RA; Bridges RJ
    J Gen Physiol; 1994 Jul; 104(1):123-46. PubMed ID: 7525859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cystic fibrosis. Acidification indication.
    Welsh MJ
    Nature; 1991 Jul; 352(6330):23-4. PubMed ID: 1712079
    [No Abstract]   [Full Text] [Related]  

  • 46. cAMP- but not Ca(2+)-regulated Cl- conductance in the oviduct is defective in mouse model of cystic fibrosis.
    Leung AY; Wong PY; Gabriel SE; Yankaskas JR; Boucher RC
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C708-12. PubMed ID: 7534985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel cystic fibrosis mutation, Y109C, in the first transmembrane domain of CFTR.
    Schaedel C; Kristoffersson AC; Kornfält R; Holmberg L
    Hum Mol Genet; 1994 Jun; 3(6):1001-2. PubMed ID: 7524909
    [No Abstract]   [Full Text] [Related]  

  • 48. Number and sex of offspring of delta F508 carriers outside cystic fibrosis families.
    de Vries HG; Collée JM; Meeuwsen WP; Scheffer H; Ten Kate LP
    Hum Genet; 1995 May; 95(5):575-6. PubMed ID: 7538971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive.
    Denning GM; Anderson MP; Amara JF; Marshall J; Smith AE; Welsh MJ
    Nature; 1992 Aug; 358(6389):761-4. PubMed ID: 1380673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of ion channels by ABC transporters that secrete ATP.
    al-Awqati Q
    Science; 1995 Aug; 269(5225):805-6. PubMed ID: 7543697
    [No Abstract]   [Full Text] [Related]  

  • 52. cAMP-activated Cl channels in CFTR-transfected cystic fibrosis pancreatic epithelial cells.
    Cliff WH; Schoumacher RA; Frizzell RA
    Am J Physiol; 1992 May; 262(5 Pt 1):C1154-60. PubMed ID: 1375432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.
    Wagner JA; McDonald TV; Nghiem PT; Lowe AW; Schulman H; Gruenert DC; Stryer L; Gardner P
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6785-9. PubMed ID: 1379720
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia.
    Denning GM; Ostedgaard LS; Cheng SH; Smith AE; Welsh MJ
    J Clin Invest; 1992 Jan; 89(1):339-49. PubMed ID: 1370301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cystic fibrosis: molecular biology and therapeutic implications.
    Collins FS
    Science; 1992 May; 256(5058):774-9. PubMed ID: 1375392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ATP-sensitive K+ channels regulated by intracellular Ca2+ and phosphorylation in normal (T84) and cystic fibrosis (CFPAC-1) epithelial cells.
    Roch B; Baró I; Hongre AS; Escande D
    Pflugers Arch; 1995 Jan; 429(3):355-63. PubMed ID: 7539125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cystic fibrosis gene expression is not correlated with rectifying Cl- channels.
    Ward CL; Krouse ME; Gruenert DC; Kopito RR; Wine JJ
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5277-81. PubMed ID: 1711224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cystic fibrosis: current concepts.
    Abrons HL
    W V Med J; 1993 Jun; 89(6):236-40. PubMed ID: 7686701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.
    Nagel G
    Biochim Biophys Acta; 1999 Dec; 1461(2):263-74. PubMed ID: 10581360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.