These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enzyme localization in bacteria. MARR AG Annu Rev Microbiol; 1960; 14():241-60. PubMed ID: 13767101 [No Abstract] [Full Text] [Related]
3. Nutrition and metabolism of marine bacteria. VIII. Tricarboxylic acid cycle enzymes in a marine bacterium and their response to inorganic salts. MACLEOD RA; HORI A J Bacteriol; 1960 Oct; 80(4):464-71. PubMed ID: 13764977 [No Abstract] [Full Text] [Related]
4. Bacteria and yeast cell disruption using lytic enzymes. Salazar O Methods Mol Biol; 2008; 424():23-34. PubMed ID: 18369849 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of enzymes used for bioindustry and bioremediation. Tanokura M; Miyakawa T; Guan L; Hou F Biosci Biotechnol Biochem; 2015; 79(9):1391-401. PubMed ID: 26072979 [TBL] [Abstract][Full Text] [Related]
6. Biotechnological applications of extremophiles, extremozymes and extremolytes. Raddadi N; Cherif A; Daffonchio D; Neifar M; Fava F Appl Microbiol Biotechnol; 2015 Oct; 99(19):7907-13. PubMed ID: 26272092 [TBL] [Abstract][Full Text] [Related]
7. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics. Mitchell GJ; Nelson DC; Weitz JS Phys Biol; 2010 Oct; 7(4):046002. PubMed ID: 20921589 [TBL] [Abstract][Full Text] [Related]
8. A novel chemical lysis method for maximum release of DNA from difficult-to-lyse bacteria. de Bruin OM; Chiefari A; Wroblewski D; Egan C; Kelly-Cirino CD Microb Pathog; 2019 Jan; 126():292-297. PubMed ID: 30414838 [TBL] [Abstract][Full Text] [Related]
9. LOV Domains in the Design of Photoresponsive Enzymes. Seifert S; Brakmann S ACS Chem Biol; 2018 Aug; 13(8):1914-1920. PubMed ID: 29905467 [TBL] [Abstract][Full Text] [Related]
10. Fusion to cell-penetrating peptides will enable lytic enzymes to kill intracellular bacteria. Borysowski J; Górski A Med Hypotheses; 2010 Jan; 74(1):164-6. PubMed ID: 19656633 [TBL] [Abstract][Full Text] [Related]
11. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Colin PY; Kintses B; Gielen F; Miton CM; Fischer G; Mohamed MF; Hyvönen M; Morgavi DP; Janssen DB; Hollfelder F Nat Commun; 2015 Dec; 6():10008. PubMed ID: 26639611 [TBL] [Abstract][Full Text] [Related]
12. Preparation and properties of the mucopeptides of cell walls of gram-negative bacteria. MANDELSTAM J Biochem J; 1962 Aug; 84(2):294-9. PubMed ID: 14469206 [No Abstract] [Full Text] [Related]
13. Preparation and properties of the iron-protoporphyrin chelating enzyme. LABBE RF; HUBBARD N Biochim Biophys Acta; 1960 Jul; 41():185-91. PubMed ID: 14413186 [No Abstract] [Full Text] [Related]
14. Metagenomics for the discovery of pollutant degrading enzymes. Ufarté L; Laville É; Duquesne S; Potocki-Veronese G Biotechnol Adv; 2015 Dec; 33(8):1845-54. PubMed ID: 26526541 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103 [TBL] [Abstract][Full Text] [Related]
16. Enzyme Mimicry for Combating Bacteria and Biofilms. Chen Z; Wang Z; Ren J; Qu X Acc Chem Res; 2018 Mar; 51(3):789-799. PubMed ID: 29489323 [TBL] [Abstract][Full Text] [Related]
17. Recent development in production and biotechnological application of microbial enzymes. Hmidet N; Nawani N; Ghorbel S Biomed Res Int; 2015; 2015():280518. PubMed ID: 25821792 [No Abstract] [Full Text] [Related]