These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 1375602)

  • 1. Neuronal excitability: voltage-dependent currents and synaptic transmission.
    Rutecki PA
    J Clin Neurophysiol; 1992 Apr; 9(2):195-211. PubMed ID: 1375602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can presynaptic depolarization release transmitter without calcium influx?
    Zucker RS; Landò L; Fogelson A
    J Physiol (Paris); 1986; 81(4):237-45. PubMed ID: 2883310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential.
    Shu Y; Hasenstaub A; Duque A; Yu Y; McCormick DA
    Nature; 2006 Jun; 441(7094):761-5. PubMed ID: 16625207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of calcium ions in the process of synaptic transmission].
    Selishcheva AA; Kozlov IuP
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1984; (9):5-21. PubMed ID: 6093901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic feed-backs mediated by potassium ions.
    Matyushkin DP; Krivoi II; Drabkina TM
    Gen Physiol Biophys; 1995 Oct; 14(5):369-81. PubMed ID: 8786037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic activity modulates presynaptic excitability.
    Nick TA; Ribera AB
    Nat Neurosci; 2000 Feb; 3(2):142-9. PubMed ID: 10649569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic spike broadening reduces junctional potential amplitude.
    Spencer AN; Przysiezniak J; Acosta-Urquidi J; Basarsky TA
    Nature; 1989 Aug; 340(6235):636-8. PubMed ID: 2475781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons.
    Engel D; Jonas P
    Neuron; 2005 Feb; 45(3):405-17. PubMed ID: 15694327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release.
    Peretz A; Sheinin A; Yue C; Degani-Katzav N; Gibor G; Nachman R; Gopin A; Tam E; Shabat D; Yaari Y; Attali B
    J Neurophysiol; 2007 Jan; 97(1):283-95. PubMed ID: 17050829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintained depolarization of synaptic terminals facilitates nerve-evoked transmitter release at a crayfish neuromuscular junction.
    Wojtowicz JM; Atwood HL
    J Neurobiol; 1983 Sep; 14(5):385-90. PubMed ID: 6137513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral processing in chemical synapses with electrical 'ephaptic' feedback: a theoretical model.
    Savtchenko LP
    Math Biosci; 2007 May; 207(1):113-37. PubMed ID: 17112549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there a mechanistic basis for rational polypharmacy?
    Macdonald RL
    Epilepsy Res Suppl; 1996; 11():79-93. PubMed ID: 9294730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotrophin action on a rapid timescale.
    Kovalchuk Y; Holthoff K; Konnerth A
    Curr Opin Neurobiol; 2004 Oct; 14(5):558-63. PubMed ID: 15464888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different types of calcium channels mediate central synaptic transmission.
    Takahashi T; Momiyama A
    Nature; 1993 Nov; 366(6451):156-8. PubMed ID: 7901765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent currents of vertebrate neurons and their role in membrane excitability.
    Adams PR; Galvan M
    Adv Neurol; 1986; 44():137-70. PubMed ID: 2422889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Major mechanisms involved in the synaptic transmission of the neuromuscular apparatus].
    Rigoard S; Wager M; Buffenoir K; Bauche S; Giot JP; Maixent JM; Rigoard P
    Neurochirurgie; 2009 Mar; 55 Suppl 1():S22-33. PubMed ID: 19230941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid potently inhibits both postsynaptic-type Kv4.2 and presynaptic-type Kv1.4 IA potassium channels.
    Angelova PR; Müller WS
    Eur J Neurosci; 2009 May; 29(10):1943-50. PubMed ID: 19453640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike-mediated and graded inhibitory synaptic transmission between leech interneurons: evidence for shared release sites.
    Ivanov AI; Calabrese RL
    J Neurophysiol; 2006 Jul; 96(1):235-51. PubMed ID: 16641378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic mechanisms underlying excitation-to-frequency transduction: studies by voltage clamp methods.
    Crill WE; Schwindt P
    Arch Ital Biol; 1984 Mar; 122(1):31-41. PubMed ID: 6087761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites.
    Miller RF; Stenback K; Henderson D; Sikora M
    Arch Ital Biol; 2002 Oct; 140(4):347-59. PubMed ID: 12228988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.