BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 1375604)

  • 1. The nigral projection to predorsal bundle cells in the superior colliculus of the rat.
    Bickford ME; Hall WC
    J Comp Neurol; 1992 May; 319(1):11-33. PubMed ID: 1375604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway from the zona incerta to the superior colliculus in the rat.
    Kim U; Gregory E; Hall WC
    J Comp Neurol; 1992 Jul; 321(4):555-75. PubMed ID: 1380519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle.
    May PJ; Hall WC
    J Comp Neurol; 1984 Jul; 226(3):357-76. PubMed ID: 6747028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early establishment of adult-like nigrotectal architecture in the neonatal cat: a double-labeling study using carbocyanine dyes.
    Gabriele ML; Smoot JE; Jiang H; Stein BE; McHaffie JG
    Neuroscience; 2006; 137(4):1309-19. PubMed ID: 16359814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat.
    Smith Y; Bolam JP
    J Comp Neurol; 1990 Jun; 296(1):47-64. PubMed ID: 1694189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study.
    Smith Y; Bolam JP
    Neuroscience; 1991; 44(1):45-73. PubMed ID: 1722893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collateral projections of predorsal bundle cells of the superior colliculus in the rat.
    Bickford ME; Hall WC
    J Comp Neurol; 1989 May; 283(1):86-106. PubMed ID: 2732363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure and synaptic organization of axon terminals from brainstem structures to the mediodorsal thalamic nucleus of the rat.
    Kuroda M; Price JL
    J Comp Neurol; 1991 Nov; 313(3):539-52. PubMed ID: 1722808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic innervation of the superior colliculus in the cat.
    Hall WC; Fitzpatrick D; Klatt LL; Raczkowski D
    J Comp Neurol; 1989 Sep; 287(4):495-514. PubMed ID: 2477409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory synaptic input to identified rubrospinal neurons in Macaca fascicularis: an electron microscopic study using a combined immuno-GABA-gold technique and the retrograde transport of WGA-HRP.
    Ralston DD; Milroy AM
    J Comp Neurol; 1992 Jun; 320(1):97-109. PubMed ID: 1383282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of the nigrotectospinal pathway in the cat: a light and electron microscopic study.
    Tokuno H; Nakamura Y
    Brain Res; 1987 Dec; 436(1):76-84. PubMed ID: 3690356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nigral inhibitory termination on efferent neurons of the superior colliculus: an intracellular horseradish peroxidase study in the cat.
    Karabelas AB; Moschovakis AK
    J Comp Neurol; 1985 Sep; 239(3):309-29. PubMed ID: 2995462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nigrotectal projection and tectospinal neurons in the rat. A light and electron microscopic study demonstrating a monosynaptic nigral input to identified tectospinal neurons.
    Williams MN; Faull RL
    Neuroscience; 1988 May; 25(2):533-62. PubMed ID: 3399058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic organization of GABAergic inputs from the striatum and the globus pallidus onto neurons in the substantia nigra and retrorubral field which project to the medullary reticular formation.
    von Krosigk M; Smith Y; Bolam JP; Smith AD
    Neuroscience; 1992 Oct; 50(3):531-49. PubMed ID: 1279463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The striatonigral projection and nigrotectal neurons in the rat. A correlated light and electron microscopic study demonstrating a monosynaptic striatal input to identified nigrotectal neurons using a combined degeneration and horseradish peroxidase procedure.
    Williams MN; Faull RL
    Neuroscience; 1985 Apr; 14(4):991-1010. PubMed ID: 4000478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels.
    Redgrave P; Marrow L; Dean P
    Neuroscience; 1992 Oct; 50(3):571-95. PubMed ID: 1279464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphological and electrophysiological study of nigrotectal pathway in the rat.
    Ribas J; Delgado-García JM; López-Beltrán A; Mir D
    Rev Esp Fisiol; 1981 Mar; 37(1):45-52. PubMed ID: 7244326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nigrotectal projections in the primate Galago crassicaudatus.
    Huerta MF; Van Lieshout DP; Harting JK
    Exp Brain Res; 1991; 87(2):389-401. PubMed ID: 1722761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit.
    De Zeeuw CI; Wentzel P; Mugnaini E
    J Comp Neurol; 1993 Jan; 327(1):63-82. PubMed ID: 7679420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.