BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1375711)

  • 1. The OM series of terminal field-specific monoclonal antibodies demonstrate reinnervation of the adult rat dentate gyrus by embryonic entorhinal transplants.
    Woodhams PL; Kawano H; Raisman G
    Neuroscience; 1992; 46(1):71-82. PubMed ID: 1375711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibodies reveal molecular differences between terminal fields in the rat dentate gyrus.
    Woodhams PL; Kawano H; Seeley PJ; Atkinson DJ; Field PM; Webb M
    Neuroscience; 1992; 46(1):57-69. PubMed ID: 1594106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryonic entorhinal transplants project selectively to the deafferented entorhinal zone of adult mouse hippocampi, as demonstrated by the use of Thy-1 allelic immunohistochemistry. Effect of timing of transplantation in relation to deafferentation.
    Zhou CF; Li Y; Raisman G
    Neuroscience; 1989; 32(2):349-62. PubMed ID: 2573861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents.
    Peterson GM
    Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entorhinal axons project to dentate gyrus in organotypic slice co-culture.
    Li D; Field PM; Starega U; Li Y; Raisman G
    Neuroscience; 1993 Feb; 52(4):799-813. PubMed ID: 7680800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Up-regulation of astrocyte-derived tenascin-C correlates with neurite outgrowth in the rat dentate gyrus after unilateral entorhinal cortex lesion.
    Deller T; Haas CA; Naumann T; Joester A; Faissner A; Frotscher M
    Neuroscience; 1997 Dec; 81(3):829-46. PubMed ID: 9316032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective innervation of embryonic hippocampal transplants by adult host dentate granule cell axons.
    Field PM; Seeley PJ; Frotscher M; Raisman G
    Neuroscience; 1991; 41(2-3):713-27. PubMed ID: 1870708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture.
    Li D; Field PM; Raisman G
    Exp Neurol; 1996 Nov; 142(1):151-60. PubMed ID: 8912906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular, histochemical and connective organization of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brains.
    Sunde NA; Zimmer J
    Brain Res; 1983 Jun; 284(2-3):165-91. PubMed ID: 6871722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve growth factor receptor immunoreactivity in the rat septohippocampal pathway: a light and electron microscope investigation.
    Kawaja MD; Gage FH
    J Comp Neurol; 1991 May; 307(3):517-29. PubMed ID: 1649845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of the associational afferents to the dentate gyrus to simultaneous or sequential elimination of the commissural and entorhinal afferents.
    Peterson GM
    Brain Res Bull; 1987 Aug; 19(2):245-59. PubMed ID: 2444313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An autoradiographic study of the development of the entorhinal and commissural afferents to the dentate gyrus of the rat.
    Fricke R; Cowan WM
    J Comp Neurol; 1977 May; 173(2):231-50. PubMed ID: 856883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice.
    Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M
    Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the neural adhesion molecule L1 in the deafferented dentate gyrus.
    Jucker M; D'Amato F; Mondadori C; Mohajeri H; Magyar J; Bartsch U; Schachner M
    Neuroscience; 1996 Dec; 75(3):703-15. PubMed ID: 8951867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domains.
    Gall C; McWilliams R; Lynch G
    Brain Res; 1979 Oct; 175(1):37-47. PubMed ID: 487150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryonic neural cell adhesion molecule (N-CAM) is elevated in the denervated rat dentate gyrus.
    Miller PD; Styren SD; Lagenaur CF; DeKosky ST
    J Neurosci; 1994 Jul; 14(7):4217-25. PubMed ID: 8027773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus.
    Buhl EH; Dann JF
    Hippocampus; 1991 Apr; 1(2):131-52. PubMed ID: 1727000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid decline in the ability of entorhinal axons to innervate the dentate gyrus with increasing time in organotypic co-culture.
    Woodhams PL; Atkinson DJ; Raisman G
    Eur J Neurosci; 1993 Dec; 5(12):1596-609. PubMed ID: 8124515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histochemical changes in enzymes of energy metabolism in the dentate gyrus accompany deafferentation and synaptic reorganization.
    Borowsky IW; Collins RC
    Neuroscience; 1989; 33(2):253-62. PubMed ID: 2560147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.