BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 1375736)

  • 41. The Bacillus subtilis ochre suppressor sup-3 is located in an operon of seven tRNA genes.
    Garrity DB; Zahler SA
    J Bacteriol; 1993 Oct; 175(20):6512-7. PubMed ID: 7691797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient aminoacylation of tRNA(Lys,3) by human lysyl-tRNA synthetase is dependent on covalent continuity between the acceptor stem and the anticodon domain.
    Stello T; Hong M; Musier-Forsyth K
    Nucleic Acids Res; 1999 Dec; 27(24):4823-9. PubMed ID: 10572184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A.
    Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR
    Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. tRNA leucine identity and recognition sets.
    Tocchini-Valentini G; Saks ME; Abelson J
    J Mol Biol; 2000 May; 298(5):779-93. PubMed ID: 10801348
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket".
    McClain WH; Foss K
    Science; 1988 Sep; 241(4874):1804-7. PubMed ID: 2459773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tertiary structural analysis of Escherichia coli lysine tRNA.
    Hayashi N; Kawai G; Takayanagi M; Noguchi T; Ueda T; Nishikawa K; Miura K; Miyazawa T; Yokoyama S; Watanabe K
    Nucleic Acids Symp Ser; 1993; (29):195-6. PubMed ID: 8247766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases.
    Fukunaga J; Ohno S; Nishikawa K; Yokogawa T
    Nucleic Acids Res; 2006; 34(10):3181-8. PubMed ID: 16772402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate recognition mechanism of tRNA-targeting ribonuclease, colicin D, and an insight into tRNA cleavage-mediated translation impairment.
    Ogawa T; Takahashi K; Ishida W; Aono T; Hidaka M; Terada T; Masaki H
    RNA Biol; 2021 Aug; 18(8):1193-1205. PubMed ID: 33211605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identity elements and aminoacylation of plant tRNATrp.
    Ulmasov B; Topin A; Chen Z; He SH; Folk WR
    Nucleic Acids Res; 1998 Nov; 26(22):5139-41. PubMed ID: 9801311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A modified uridine in the first position of the anticodon of a minor species of arginine tRNA, the argU gene product, from Escherichia coli.
    Sakamoto K; Kawai G; Niimi T; Satoh T; Sekine M; Yamaizumi Z; Nishimura S; Miyazawa T; Yokoyama S
    Eur J Biochem; 1993 Sep; 216(2):369-75. PubMed ID: 7690702
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An anticodon change switches the identity of E. coli tRNA(mMet) from methionine to threonine.
    Schulman LH; Pelka H
    Nucleic Acids Res; 1990 Jan; 18(2):285-9. PubMed ID: 2109304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase.
    Lee CP; Dyson MR; Mandal N; Varshney U; Bahramian B; RajBhandary UL
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9262-6. PubMed ID: 1409632
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):291-5. PubMed ID: 7506418
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of acceptor stem base pairing on tRNA(Trp) aminoacylation and function in vivo.
    Pak M; Willis IM; Schulman LH
    J Biol Chem; 1994 Jan; 269(3):2277-82. PubMed ID: 8294486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi.
    Ambrogelly A; Frugier M; Ibba M; Söll D; Giegé R
    FEBS Lett; 2005 May; 579(12):2629-34. PubMed ID: 15862301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of the E. coli tRNA(Arg) aminoacyl stem isoacceptor RR-1660 at 2.0 A resolution.
    Eichert A; Perbandt M; Oberthür D; Schreiber A; Fürste JP; Betzel C; Erdmann VA; Förster C
    Biochem Biophys Res Commun; 2009 Jul; 385(1):84-7. PubMed ID: 19426710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conversion of aminoacylation specificity from tRNA(Tyr) to tRNA(Ser) in vitro.
    Himeno H; Hasegawa T; Ueda T; Watanabe K; Shimizu M
    Nucleic Acids Res; 1990 Dec; 18(23):6815-9. PubMed ID: 2263446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase.
    Komatsoulis GA; Abelson J
    Biochemistry; 1993 Jul; 32(29):7435-44. PubMed ID: 8338841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The peculiar architectural framework of tRNASec is fully recognized by yeast AspRS.
    Rudinger-Thirion J; Giegé R
    RNA; 1999 Apr; 5(4):495-502. PubMed ID: 10199566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules.
    Aldinger CA; Leisinger AK; Gaston KW; Limbach PA; Igloi GL
    RNA Biol; 2012 Oct; 9(10):1239-46. PubMed ID: 22922796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.