These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1375737)

  • 1. Mutational evidence for competition between the P1 and the P10 helices of a mitochondrial group I intron.
    Ritchings BW; Lewin AS
    Nucleic Acids Res; 1992 May; 20(9):2349-53. PubMed ID: 1375737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.
    Partono S; Lewin AS
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8192-6. PubMed ID: 2236031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved U.G pair in the 5' splice site duplex of a group I intron is required in the first but not the second step of self-splicing.
    Barfod ET; Cech TR
    Mol Cell Biol; 1989 Sep; 9(9):3657-66. PubMed ID: 2779562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On how hydrolysis at the 3' end is prevented in the splicing of a sequentially folded group I intron.
    Fernández A
    FEBS Lett; 1992 Feb; 297(1-2):201-4. PubMed ID: 1551430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of a tertiary interaction functional in group I 3'-splicing.
    Fernández A; Belinky A
    FEBS Lett; 1992 Jul; 305(3):225-7. PubMed ID: 1299621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cbp2 protein suppresses splice site mutations in a group I intron.
    Shaw LC; Thomas J; Lewin AS
    Nucleic Acids Res; 1996 Sep; 24(17):3415-23. PubMed ID: 8811097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.
    Suh ER; Waring RB
    Mol Cell Biol; 1990 Jun; 10(6):2960-5. PubMed ID: 2342465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron.
    Doudna JA; Cormack BP; Szostak JW
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7402-6. PubMed ID: 2678103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. Implications for intron-mediated RNA recombination, intron transposition and 5.8 S rRNA structure.
    Thompson AJ; Herrin DL
    J Mol Biol; 1994 Feb; 236(2):455-68. PubMed ID: 8107133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group II intron splicing in vivo by first-step hydrolysis.
    Podar M; Chu VT; Pyle AM; Perlman PS
    Nature; 1998 Feb; 391(6670):915-8. PubMed ID: 9495347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirements of a group I intron for reactions at the 3' splice site.
    van der Horst G; Inoue T
    J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel system for analysis of group I 3' splice site reactions based on functional trans-interaction of the P1/P10 reaction helix with the ribozyme's catalytic core.
    Chowrira BM; Berzal-Herranz A; Burke JM
    Nucleic Acids Res; 1995 Mar; 23(5):849-55. PubMed ID: 7708502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group II intron splicing in chloroplasts: identificationof mutations determining intron stability and fate of exon RNA.
    Holländer V; Kück U
    Nucleic Acids Res; 1999 Jun; 27(11):2345-53. PubMed ID: 10325424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phosphorothioate at the 3' splice-site inhibits the second splicing step in a group I intron.
    Suh E; Waring RB
    Nucleic Acids Res; 1992 Dec; 20(23):6303-9. PubMed ID: 1282238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-splicing of a group II intron in yeast mitochondria: dependence on 5' exon sequences.
    van der Veen R; Arnberg AC; Grivell LA
    EMBO J; 1987 Apr; 6(4):1079-84. PubMed ID: 3297671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.