These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 13758499)

  • 1. Growth promoting properties of 6-ethyl-7-methyl-9-(1'-D-ribityl)isoalloxazine and 6-methyl-7-ethyl-9-(1-D-ribityl)isoalloxazine.
    Lambooy JP
    J Nutr; 1961 Sep; 75():116-26. PubMed ID: 13758499
    [No Abstract]   [Full Text] [Related]  

  • 2. The biological activity of 6-ethyl-7-methyl- and 6-methyl-7-ethyl-9-(1'-D-ribityl)-isoalloxazine.
    LAMBOOY JP
    Biochim Biophys Acta; 1958 Jul; 29(1):221. PubMed ID: 13560475
    [No Abstract]   [Full Text] [Related]  

  • 3. The biological activity of 6-ethyl-9-(1'-D-ribityl)-isoalloxazine.
    Lambooy JP; Aposhian HV
    J Nutr; 1960 Jun; 71(2):182-7. PubMed ID: 14413632
    [No Abstract]   [Full Text] [Related]  

  • 4. The biological activity of 6-chloro-7-methyl-9-(1'-D-ribityl)-isoalloxazine.
    Haley EE; Lambooy JP
    J Nutr; 1960 Oct; 72(2):169-76. PubMed ID: 13710715
    [No Abstract]   [Full Text] [Related]  

  • 5. Utilization of the riboflavine inhibitor 6-chloro-7-methyl-9-(1'-D-ribityl)isoalloxazine by Lactobacillus casei.
    SCALA RA; LAMBOOY JP
    Arch Biochem Biophys; 1958 Nov; 78(1):10-4. PubMed ID: 13595898
    [No Abstract]   [Full Text] [Related]  

  • 6. Syntheses and biological activities of 7-ethyl-8-bromo-10-(1'-D-ribityl)isoalloxazine and 7-bromo-8-ethyl-10-(1'-D-ribityl)isoalloxazine, analogs of riboflavin.
    Lambooy JP
    J Med Chem; 1974 Feb; 17(2):227-30. PubMed ID: 4203369
    [No Abstract]   [Full Text] [Related]  

  • 7. Syntheses and biological activities of 7-ethyl-8-chloro-10-(1'-D-ribityl) isoalloxazine and 7-chloro-8-ethyl-10(1'-D-ribityl) isoalloxazine, analogs of riboflavin.
    Lambooy JP; Lambooy JP
    J Med Chem; 1973 Jul; 16(7):765-70. PubMed ID: 4199215
    [No Abstract]   [Full Text] [Related]  

  • 8. Hematologic changes in rat following administration of desoxypyridoxine, aminopterin, oxythiamine and 6,7-dimethyl-9-(2'-acetoxyethyl)isoalloxazine.
    DOCTOR VM
    Blood; 1959 Nov; 14():1244-9. PubMed ID: 13817124
    [No Abstract]   [Full Text] [Related]  

  • 9. Activity of 6,7-diethyl-9-(D-1'-ribityl)-isoalloxazine for Lactobacillus casei.
    LAMBOOY JP
    J Biol Chem; 1951 Feb; 188(2):459-62. PubMed ID: 14824132
    [No Abstract]   [Full Text] [Related]  

  • 10. [Overproduction of riboflavin in mutants of Pichia guilliermondii yeasts resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine].
    Shavlovskiĭ GM; Sibirnyĭ AA; Ksheminskaia GP; Pinchuk GE
    Mikrobiologiia; 1980; 49(5):702-7. PubMed ID: 7442566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of riboflavin analogs on Pichia guilliermondii growth].
    Kashchenko VE; Shavlovskiĭ GM; Babiak LIa
    Mikrobiologiia; 1982; 51(4):593-600. PubMed ID: 7144611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and biological activity of 7-methyl-8-bromo-10-(1'-D-ribityl)isoalloxazine, an analog of riboflavin.
    Lambooy JP
    Proc Soc Exp Biol Med; 1972 Dec; 141(3):948-52. PubMed ID: 4630289
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of the chemical structures of schizoflavins as 7,8-dimethyl-10-(2,3,4-trihydroxy-4-formylbutyl)isoalloxazine and 7,8-dimethyl-10-(2,3,4-trihydroxy-4-carboxybutyl)isoalloxazine.
    Tachibana S; Murakami T; Ninomiya T
    J Nutr Sci Vitaminol (Tokyo); 1975; 21(5):347-53. PubMed ID: 1241696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetic control of riboflavin biosynthesis in Pichia guilliermondii yeasts. The detection of a new regulator gene RIB81].
    Shavlovskiĭ GM; Babiak LIa; Sibirnyĭ AA; Logvinenko EM
    Genetika; 1985 Mar; 21(3):368-74. PubMed ID: 3838729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of the riboflavin interaction with the immunoglobulin IgGGAR: analogue binding studies.
    Pologe LG; Goyal A; Greer J
    Mol Immunol; 1982 Nov; 19(11):1499-507. PubMed ID: 7183913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin substrate specificity of the vitamin B2-aldehyde-forming enzyme from Schizophyllum commune.
    Kekelidze TN; Edmondson DE; McCormick DB
    Arch Biochem Biophys; 1994 Nov; 315(1):100-3. PubMed ID: 7979385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urinary lumichrome-level catabolites of riboflavin are due to microbial and photochemical events and not rat tissue enzymatic cleavage of the ribityl chain.
    Oka M; McCormick DB
    J Nutr; 1985 Apr; 115(4):496-9. PubMed ID: 3981268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the redox potential of deazariboflavin by equilibration with flavins.
    Stankovich MT; Massey V
    Biochim Biophys Acta; 1976 Dec; 452(2):335-44. PubMed ID: 12806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing protonation sites of isolated flavins using IR spectroscopy: from lumichrome to the cofactor flavin mononucleotide.
    Langer J; Günther A; Seidenbecher S; Berden G; Oomens J; Dopfer O
    Chemphyschem; 2014 Aug; 15(12):2550-62. PubMed ID: 24895155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Riboflavin and lumiflavin analogs and alloxazine derivatives. I. Effect on riboflavin synthesis by and growth of Bacillus subtilis].
    Stepanov AI; Tul'chinskaia LS; Berezovskiĭ VM; Kukanova AIa
    Genetika; 1975; 11(9):116-24. PubMed ID: 814049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.