These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 13758825)
1. [The production of mononucleotides from high polymer desoxyribonucleic acids by means of snake venom]. LANGEN P Biochem Z; 1961; 334():65-72. PubMed ID: 13758825 [No Abstract] [Full Text] [Related]
2. Further observations on the adenosine phosphatases of cobra venom. KAYE MA Biochim Biophys Acta; 1960 Feb; 38():34-44. PubMed ID: 14405018 [No Abstract] [Full Text] [Related]
3. [Studies on the snake venom enzyme. XIII. On the ribonuclease activity of Formosan snake venoms]. TSAI FT Fukuoka Igaku Zasshi; 1961 Jan; 52():47-51. PubMed ID: 13778318 [No Abstract] [Full Text] [Related]
5. Synthesis and characterization of chimeric 2-5A-DNA oligonucleotides. Player MR; Torrence PF Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 4():Unit 4.4. PubMed ID: 18428851 [TBL] [Abstract][Full Text] [Related]
6. Action of venom phosphodiesterase on deoxyribonucleic acid. WILLIAMS EJ; SUNG SC; LASKOWSKI M J Biol Chem; 1961 Apr; 236():1130-4. PubMed ID: 13785422 [No Abstract] [Full Text] [Related]
7. The preparation and some properties of a reduced diphosphopyridine nucleotide dehydrogenase from the snake venom digest of a heartmuscle preparation. KING TE; HOWARD RL J Biol Chem; 1962 May; 237():1686-98. PubMed ID: 14456130 [No Abstract] [Full Text] [Related]
8. Rapid spectrophotometric assays for snake venom L-amino acid oxidase based on the oxidation of L-kynurenine or 3,4-dehydro-L-proline. WEISSBACH H; ROBERTSON AV; WITKOP B; UDENFRIEND S Anal Biochem; 1960 Dec; 1():286-90. PubMed ID: 13784119 [No Abstract] [Full Text] [Related]
10. [Hydrolysis of low molecular weight substrates with diester and pyrophosphate bonds by snake venom phosphodiesterase]. Dolapchiev LB Biokhimiia; 1970; 35(6):1073-7. PubMed ID: 4396272 [No Abstract] [Full Text] [Related]
11. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. Pook CE; McEwing R Toxicon; 2005 Dec; 46(7):711-5. PubMed ID: 16157361 [TBL] [Abstract][Full Text] [Related]
12. Nucleotidase and DNase activities in Brazilian snake venoms. Sales PB; Santoro ML Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):85-95. PubMed ID: 17904425 [TBL] [Abstract][Full Text] [Related]
13. The formation of pyrophosphate from adenosine triphosphate in the presence of a snake venom. ZELLER EA Arch Biochem; 1950 Aug; 28(1):138-9. PubMed ID: 14771934 [No Abstract] [Full Text] [Related]
14. The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines - a multitoxin. Dhananjaya BL; D'Souza CJ Basic Clin Pharmacol Toxicol; 2011 Feb; 108(2):79-83. PubMed ID: 21156030 [TBL] [Abstract][Full Text] [Related]
15. Enzymic hydrolysis of adenosine phosphates by cobra venom. JOHNSON M; KAYE MA; HEMS R; KREBS HA Biochem J; 1953 Jul; 54(4):625-9. PubMed ID: 13058963 [No Abstract] [Full Text] [Related]
17. 5'-O-dephosphorylated 2',5'-oligoadenylate (2-5A) with 8-methyladenosine at the 2'-terminus activates human RNase L. Nagaoka K; Kitamura Y; Ueno Y; Kitade Y Bioorg Med Chem Lett; 2010 Feb; 20(3):1186-8. PubMed ID: 20022497 [TBL] [Abstract][Full Text] [Related]
18. The effects of heated snake venom on the phosphate metabolism of the rat spinal cord. HUDSON AJ; QUASTEL JH; SCHOLEFIELD PG J Neurochem; 1960 Feb; 5():177-84. PubMed ID: 14403735 [No Abstract] [Full Text] [Related]
19. Analysis of snake venom composition and antimicrobial activity. Charvat RA; Strobel RM; Pasternak MA; Klass SM; Rheubert JL Toxicon; 2018 Aug; 150():151-167. PubMed ID: 29800609 [TBL] [Abstract][Full Text] [Related]
20. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms. O'Leary MA; Maduwage K; Isbister GK J Pharmacol Toxicol Methods; 2013; 67(3):177-81. PubMed ID: 23416032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]