These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1375885)

  • 1. Steady-state vibration evoked potentials: descriptions of technique and characterization of responses.
    Snyder AZ
    Electroencephalogr Clin Neurophysiol; 1992; 84(3):257-68. PubMed ID: 1375885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state vibration somatosensory evoked potentials: physiological characteristics and tuning function.
    Tobimatsu S; Zhang YM; Kato M
    Clin Neurophysiol; 1999 Nov; 110(11):1953-8. PubMed ID: 10576493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation.
    Bromm B; Chen AC
    Electroencephalogr Clin Neurophysiol; 1995 Jul; 95(1):14-26. PubMed ID: 7621766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.
    Tichko P; Skoe E
    Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regularity increases middle latency evoked and late induced beta brain response following proprioceptive stimulation.
    Arnfred SM; Hansen LK; Parnas J; Mørup M
    Brain Res; 2008 Jul; 1218():114-31. PubMed ID: 18514635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatotopic finger mapping using MEG: toward an optimal stimulation paradigm.
    Jamali S; Ross B
    Clin Neurophysiol; 2013 Aug; 124(8):1659-70. PubMed ID: 23518470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential temporal coding of the vibratory sense in the hand and foot in man.
    Tobimatsu S; Zhang YM; Suga R; Kato M
    Clin Neurophysiol; 2000 Mar; 111(3):398-404. PubMed ID: 10699398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short latency somatosensory evoked potentials to median nerve stimulation: effect of low frequency filter.
    Maccabee PJ; Pinkhasov EI; Cracco RQ
    Electroencephalogr Clin Neurophysiol; 1983 Jan; 55(1):34-44. PubMed ID: 6185300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans.
    Cohen LT; Rickards FW; Clark GM
    J Acoust Soc Am; 1991 Nov; 90(5):2467-79. PubMed ID: 1774415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically and electrically evoked somatosensory potentials in human: scalp and neck distributions of short latency components.
    Pratt H; Starr A
    Electroencephalogr Clin Neurophysiol; 1981 Feb; 51(2):138-47. PubMed ID: 6161787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical EEG components that reflect inverse effectiveness during visuotactile integration processing.
    Kanayama N; Kimura K; Hiraki K
    Brain Res; 2015 Feb; 1598():18-30. PubMed ID: 25514335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli.
    Kunde V; Treede RD
    Electroencephalogr Clin Neurophysiol; 1993; 88(4):280-9. PubMed ID: 7688283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test-retest reliability of concurrently recorded steady-state and somatosensory evoked potentials in somatosensory sustained spatial attention.
    Pang CY; Mueller MM
    Biol Psychol; 2014 Jul; 100():86-96. PubMed ID: 24911551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological characteristics of responses of wide dynamic range spinal neurones to cutaneously applied vibration in the cat.
    Salter MW; Henry JL
    Brain Res; 1990 Jan; 507(1):69-84. PubMed ID: 2302582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glossopharyngeal evoked potentials in normal subjects following mechanical stimulation of the anterior faucial pillar.
    Fujiu M; Toleikis JR; Logemann JA; Larson CR
    Electroencephalogr Clin Neurophysiol; 1994 May; 92(3):183-95. PubMed ID: 7514988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement-related changes in cortical excitability: a steady-state SEP approach.
    Kourtis D; Seiss E; Praamstra P
    Brain Res; 2008 Dec; 1244():113-20. PubMed ID: 18845129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prestimulation-induced modulation of the P300 component of event related potentials accompanying startle in children.
    Sugawara M; Sadeghpour M; De Traversay J; Ornitz EM
    Electroencephalogr Clin Neurophysiol; 1994 Mar; 90(3):201-13. PubMed ID: 7511502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Captured by the pain: pain steady-state evoked potentials are not modulated by selective spatial attention.
    Blöchl M; Franz M; Miltner WH; Weiss T
    Brain Res; 2015 Apr; 1603():94-100. PubMed ID: 25637852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective spatial attention to left or right hand flutter sensation modulates the steady-state somatosensory evoked potential.
    Giabbiconi CM; Dancer C; Zopf R; Gruber T; Müller MM
    Brain Res Cogn Brain Res; 2004 Jun; 20(1):58-66. PubMed ID: 15130590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two discrete components of the 20 Hz steady-state response are distinguished through the modulation of activation level.
    Griskova I; Morup M; Parnas J; Ruksenas O; Arnfred SM
    Clin Neurophysiol; 2009 May; 120(5):904-9. PubMed ID: 19345612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.