These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 1375933)

  • 21. Characterization of the calmodulin-binding domain of rat cerebellar nitric oxide synthase.
    Zhang M; Vogel HJ
    J Biol Chem; 1994 Jan; 269(2):981-5. PubMed ID: 7507114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Are calcium-dependent protein kinases involved in the regulation of glycolytic/gluconeogenetic enzymes? Studies with Ca2+/calmodulin-dependent protein kinase and protein kinase C.
    Mieskes G; Kuduz J; Söling HD
    Eur J Biochem; 1987 Sep; 167(2):383-9. PubMed ID: 3040408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation of nitric oxide synthase by protein kinase A.
    Brüne B; Lapetina EG
    Biochem Biophys Res Commun; 1991 Dec; 181(2):921-6. PubMed ID: 1721813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prokaryotic expression of the heme- and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-binding proximal thiolate ligand as cysteine-415.
    McMillan K; Masters BS
    Biochemistry; 1995 Mar; 34(11):3686-93. PubMed ID: 7534476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of superoxide by purified brain nitric oxide synthase.
    Pou S; Pou WS; Bredt DS; Snyder SH; Rosen GM
    J Biol Chem; 1992 Dec; 267(34):24173-6. PubMed ID: 1280257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: comparative study of the phosphorylation sites.
    Hashimoto Y; Soderling TR
    Arch Biochem Biophys; 1990 Apr; 278(1):41-5. PubMed ID: 2157362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II.
    Jahn H; Nastainczyk W; Röhrkasten A; Schneider T; Hofmann F
    Eur J Biochem; 1988 Dec; 178(2):535-42. PubMed ID: 2850184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activators of protein kinase C increase the phosphorylation of the synapsins at sites phosphorylated by cAMP-dependent and Ca2+/calmodulin-dependent protein kinase in the rat hippocampal slice.
    Browning MD; Dudek EM
    Synapse; 1992 Jan; 10(1):62-70. PubMed ID: 1311130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of nitric oxide synthase in the cerebellum of the chicken.
    Yamakawa Y; Shiraishi H; Yamakawa M
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Oct; 118(2):457-61. PubMed ID: 9440237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro.
    Waxham MN; Aronowski J
    Biochemistry; 1993 Mar; 32(11):2923-30. PubMed ID: 8384482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dendritic peptide neurogranin can regulate a calmodulin-dependent target.
    Martzen MR; Slemmon JR
    J Neurochem; 1995 Jan; 64(1):92-100. PubMed ID: 7528268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation of myosin light chain kinase from vascular smooth muscle by cAMP- and cGMP-dependent protein kinases.
    Hathaway DR; Konicki MV; Coolican SA
    J Mol Cell Cardiol; 1985 Sep; 17(9):841-50. PubMed ID: 2995688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of elongation factor-2 kinase on serine 499 by cAMP-dependent protein kinase induces Ca2+/calmodulin-independent activity.
    Diggle TA; Subkhankulova T; Lilley KS; Shikotra N; Willis AE; Redpath NT
    Biochem J; 2001 Feb; 353(Pt 3):621-6. PubMed ID: 11171059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin.
    Roman LJ; Martásek P; Miller RT; Harris DE; de La Garza MA; Shea TM; Kim JJ; Masters BS
    J Biol Chem; 2000 Sep; 275(38):29225-32. PubMed ID: 10871625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2+/calmodulin-regulated nitric oxide synthases.
    Schmidt HH; Pollock JS; Nakane M; Förstermann U; Murad F
    Cell Calcium; 1992; 13(6-7):427-34. PubMed ID: 1380405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate binding and calmodulin binding to endothelial nitric oxide synthase coregulate its enzymatic activity.
    Presta A; Liu J; Sessa WC; Stuehr DJ
    Nitric Oxide; 1997 Feb; 1(1):74-87. PubMed ID: 9701047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases.
    Huttner WB; DeGennaro LJ; Greengard P
    J Biol Chem; 1981 Feb; 256(3):1482-8. PubMed ID: 6256398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromodulin (GAP-43) can regulate a calmodulin-dependent target in vitro.
    Slemmon JR; Martzen MR
    Biochemistry; 1994 May; 33(18):5653-60. PubMed ID: 7514037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase.
    Talwar PS; Gupta R; Maurya AK; Deswal R
    Plant Physiol Biochem; 2012 Nov; 60():157-64. PubMed ID: 22947512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.