BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 1375940)

  • 1. Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase.
    Klatt P; Heinzel B; John M; Kastner M; Böhme E; Mayer B
    J Biol Chem; 1992 Jun; 267(16):11374-8. PubMed ID: 1375940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a calmodulin-dependent nitric oxide synthase from GH3 pituitary cells.
    Wolff DJ; Datto GA
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):201-6. PubMed ID: 1379040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase.
    Heinzel B; John M; Klatt P; Böhme E; Mayer B
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):627-30. PubMed ID: 1371384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase.
    Sheta EA; McMillan K; Masters BS
    J Biol Chem; 1994 May; 269(21):15147-53. PubMed ID: 7515050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide synthase-catalyzed activation of oxygen and reduction of cytochromes: reaction mechanisms and possible physiological implications.
    Mayer B; Heinzel B; Klatt P; John M; Schmidt K; Böhme E
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S54-6. PubMed ID: 1282986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+/calmodulin-regulated nitric oxide synthases.
    Schmidt HH; Pollock JS; Nakane M; Förstermann U; Murad F
    Cell Calcium; 1992; 13(6-7):427-34. PubMed ID: 1380405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dual mode of inhibition of calmodulin-dependent nitric-oxide synthase by antifungal imidazole agents.
    Wolff DJ; Datto GA; Samatovicz RA
    J Biol Chem; 1993 May; 268(13):9430-6. PubMed ID: 7683652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase.
    Chen PF; Wu KK
    J Biol Chem; 2003 Dec; 278(52):52392-400. PubMed ID: 14561757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthase and a soluble guanylyl cyclase in vertebrate photoreceptor cells.
    Koch KW; Lambrecht HG; Haberecht M; Redburn D; Schmidt HH
    EMBO J; 1994 Jul; 13(14):3312-20. PubMed ID: 7519146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase.
    Schmidt HH; Pollock JS; Nakane M; Gorsky LD; Förstermann U; Murad F
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):365-9. PubMed ID: 1703296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal NADPH diaphorase is a nitric oxide synthase.
    Hope BT; Michael GJ; Knigge KM; Vincent SR
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2811-4. PubMed ID: 1707173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pterin interactions with distinct reductase activities of NO synthase.
    Pantke MM; Reif A; Valtschanoff JG; Shutenko Z; Frey A; Weinberg RJ; Pfleiderer W; Schmidt HH
    Biochem J; 2001 May; 356(Pt 1):43-51. PubMed ID: 11336634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase.
    Mayer B; John M; Heinzel B; Werner ER; Wachter H; Schultz G; Böhme E
    FEBS Lett; 1991 Aug; 288(1-2):187-91. PubMed ID: 1715290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition of the constitutive and inducible nitric oxide synthase isoforms by indazole agents.
    Wolff DJ; Gribin BJ
    Arch Biochem Biophys; 1994 Jun; 311(2):300-6. PubMed ID: 7515613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 dependent N-hydroxylation of a guanidine (debrisoquine), microsomal catalysed reduction and further oxidation of the N-hydroxy-guanidine metabolite to the urea derivative. Similarity with the oxidation of arginine to citrulline and nitric oxide.
    Clement B; Schultze-Mosgau MH; Wohlers H
    Biochem Pharmacol; 1993 Dec; 46(12):2249-67. PubMed ID: 8274159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calmodulin-dependent nitric-oxide synthase. Mechanism of inhibition by imidazole and phenylimidazoles.
    Wolff DJ; Datto GA; Samatovicz RA; Tempsick RA
    J Biol Chem; 1993 May; 268(13):9425-9. PubMed ID: 7683651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of tetrahydrobiopterin-induced oxidation of nitric oxide.
    Mayer B; Klatt P; Werner ER; Schmidt K
    J Biol Chem; 1995 Jan; 270(2):655-9. PubMed ID: 7529763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the nitric oxide synthase-catalyzed conversion of arginine to N-hydroxyarginine, the first oxygenation step in the enzymic synthesis of nitric oxide.
    Campos KL; Giovanelli J; Kaufman S
    J Biol Chem; 1995 Jan; 270(4):1721-8. PubMed ID: 7530247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin.
    Mayer B; John M; Böhme E
    FEBS Lett; 1990 Dec; 277(1-2):215-9. PubMed ID: 1702732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90.
    Takahashi S; Mendelsohn ME
    J Biol Chem; 2003 Mar; 278(11):9339-44. PubMed ID: 12519764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.