These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 1376219)
1. A monoclonal antibody distinguishes anterior horn cells of human embryonic spinal cord during a transient period of development. Erkman L; Mattenberger L; Kato AC Brain Res Dev Brain Res; 1992 Mar; 66(1):109-17. PubMed ID: 1376219 [TBL] [Abstract][Full Text] [Related]
2. Transient expression of GABA immunoreactivity in the developing rat spinal cord. Ma W; Behar T; Barker JL J Comp Neurol; 1992 Nov; 325(2):271-90. PubMed ID: 1460116 [TBL] [Abstract][Full Text] [Related]
3. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord. Antal M; Polgár E; Berki A; Birinyi A; Puskár Z Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167 [TBL] [Abstract][Full Text] [Related]
4. Development of calbindin-D28k immunoreactive neurons in the embryonic chick lumbosacral spinal cord. Antal M; Polgár E Eur J Neurosci; 1993 Jul; 5(7):782-94. PubMed ID: 8281290 [TBL] [Abstract][Full Text] [Related]
5. A new membrane antigen revealed by monoclonal antibodies is associated with motoneuron axonal pathways. Tanaka H; Agata A; Obata K Dev Biol; 1989 Apr; 132(2):419-35. PubMed ID: 2647544 [TBL] [Abstract][Full Text] [Related]
6. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord. Antal M; Berki AC; Horváth L; O'Donovan MJ J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440 [TBL] [Abstract][Full Text] [Related]
7. Developmental changes in the expression of alpha-, beta- and gamma-subspecies of protein kinase C at synapses in the ventral horn of the embryonic and postnatal rat spinal cord. Miki A Brain Res Dev Brain Res; 1995 Jun; 87(1):46-54. PubMed ID: 7554231 [TBL] [Abstract][Full Text] [Related]
8. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. Berki AC; O'Donovan MJ; Antal M J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469 [TBL] [Abstract][Full Text] [Related]
9. Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression. Xu K; Uchida K; Nakajima H; Kobayashi S; Baba H Spine (Phila Pa 1976); 2006 Aug; 31(17):1867-74. PubMed ID: 16924202 [TBL] [Abstract][Full Text] [Related]
10. Molecular mapping of developing dorsal horn-enriched genes by microarray and dorsal/ventral subtractive screening. Li MZ; Wang JS; Jiang DJ; Xiang CX; Wang FY; Zhang KH; Williams PR; Chen ZF Dev Biol; 2006 Apr; 292(2):555-64. PubMed ID: 16516881 [TBL] [Abstract][Full Text] [Related]
11. Developmental pattern and distribution of nerve growth factor low-affinity receptor immunoreactivity in human spinal cord and dorsal root ganglia: comparison with synaptophysin, neurofilament and neuropeptide immunoreactivities. Suburo AM; Gu XH; Moscoso G; Ross A; Terenghi G; Polak JM Neuroscience; 1992 Sep; 50(2):467-82. PubMed ID: 1436499 [TBL] [Abstract][Full Text] [Related]
12. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study. Phelps PE; Barber RP; Vaughn JE J Comp Neurol; 1988 Jul; 273(4):459-72. PubMed ID: 3209733 [TBL] [Abstract][Full Text] [Related]
13. Rates of oxygen uptake by embryonic anterior horn tissue isolated at various developmental stages. Fisher KR; Hertz L Proc Soc Exp Biol Med; 1975 Jul; 149(3):702-6. PubMed ID: 1144460 [TBL] [Abstract][Full Text] [Related]
14. Tau protein immunolocalization in fetal and adult human spinal cord. Liberini P; Valerio A; Moretto G; Rizzonelli P; Memo M; Rizzuto N; Spano PF Neurosci Res; 1995 May; 22(2):197-202. PubMed ID: 7566700 [TBL] [Abstract][Full Text] [Related]
15. Immunocytochemical localisation of microtubule-associated proteins 1b and 2 in the developing rat spinal cord. Oudega M; Touri F; Deenen MG; Riederer BM; Marani E J Anat; 1995 Dec; 187 ( Pt 3)(Pt 3):723-37. PubMed ID: 8586570 [TBL] [Abstract][Full Text] [Related]
16. Generation of a monoclonal antibody specific for a new class of minor ganglioside antigens, GQ1b alpha and GT1a alpha: its binding to dorsal and lateral horn of human thoracic cord. Kusunoki S; Chiba A; Hirabayashi Y; Irie F; Kotani M; Kawashima I; Tai T; Nagai Y Brain Res; 1993 Sep; 623(1):83-8. PubMed ID: 8221098 [TBL] [Abstract][Full Text] [Related]
17. Fibronectin expression in the developing human spinal cord, nerves, and ganglia. Krolo M; Vilović K; Sapunar D; Vrdoljak E; Saraga-Babic M Croat Med J; 1998 Dec; 39(4):386-91. PubMed ID: 9841937 [TBL] [Abstract][Full Text] [Related]
18. Isolation and culture of motoneurons from embryonic chicken spinal cords. Masuko S; Kuromi H; Shimada Y Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3537-41. PubMed ID: 291021 [TBL] [Abstract][Full Text] [Related]
19. Cues intrinsic to the spinal cord determine the pattern and timing of primary afferent growth. Redmond L; Xie H; Ziskind-Conhaim L; Hockfield S Dev Biol; 1997 Feb; 182(2):205-18. PubMed ID: 9070322 [TBL] [Abstract][Full Text] [Related]
20. [Time of origin of cells in the histiogenesis of the spinal cord]. Gracheva ND Arkh Anat Gistol Embriol; 1975 Apr; 68(4):22-8. PubMed ID: 1191042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]