These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 13765126)

  • 1. [Vitamin K reductase, from cattle and ratliver].
    MAERKI F; MARTIUS C
    Biochem Z; 1961; 334():293-303. PubMed ID: 13765126
    [No Abstract]   [Full Text] [Related]  

  • 2. [Vitamin K reductase, preparation and properties].
    MAERKI F; MARTIUS C
    Biochem Z; 1960; 333():111-35. PubMed ID: 13765127
    [No Abstract]   [Full Text] [Related]  

  • 3. [Isolation and properties of a DPNH-quinone reductase from hog liver].
    FRIMMER M
    Biochem Z; 1960; 332():522-41. PubMed ID: 13825250
    [No Abstract]   [Full Text] [Related]  

  • 4. Quinone oxidoreductases and vitamin K metabolism.
    Gong X; Gutala R; Jaiswal AK
    Vitam Horm; 2008; 78():85-101. PubMed ID: 18374191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DT diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties.
    ERNSTER L; DANIELSON L; LJUNGGREN M
    Biochim Biophys Acta; 1962 Apr; 58():171-88. PubMed ID: 13890666
    [No Abstract]   [Full Text] [Related]  

  • 6. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.
    Wallin R; Martin LF
    J Clin Invest; 1985 Nov; 76(5):1879-84. PubMed ID: 3932474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicoumarol: A Drug which Hits at Least Two Very Different Targets in Vitamin K Metabolism.
    Timson DJ
    Curr Drug Targets; 2017; 18(5):500-510. PubMed ID: 26201483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.
    Caspers M; Czogalla KJ; Liphardt K; Müller J; Westhofen P; Watzka M; Oldenburg J
    Thromb Res; 2015 May; 135(5):977-83. PubMed ID: 25747820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin K metabolism in a patient resistant to vitamin K antagonists.
    Keréveur A; Leclercq M; Trossaërt M; Dupeyron JP; Parent F; Horellou MH; Conard J; Bachmann F; Samama MM
    Haemostasis; 1997; 27(4):168-73. PubMed ID: 9483171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases.
    Jaiswal AK
    Arch Biochem Biophys; 2000 Mar; 375(1):62-8. PubMed ID: 10683249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin K metabolism.
    Newman P; Shearer MJ
    Subcell Biochem; 1998; 30():455-88. PubMed ID: 9932526
    [No Abstract]   [Full Text] [Related]  

  • 12. [The VKOR target for warfarin identified].
    Le Bonniec B
    Med Sci (Paris); 2004 May; 20(5):512-4. PubMed ID: 15190465
    [No Abstract]   [Full Text] [Related]  

  • 13. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics.
    Ross D; Siegel D
    Methods Enzymol; 2004; 382():115-44. PubMed ID: 15047100
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of NAD(P)H:quinone acceptor oxidoreductase by flavones: a structure-activity study.
    Chen S; Hwang J; Deng PS
    Arch Biochem Biophys; 1993 Apr; 302(1):72-7. PubMed ID: 8470908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver respiration, succinoxidase and DPN-cytochrome c reductase activity in vitamin K-deficiency and after treatment with long-acting anticoagulants.
    GREEN JP; SONDERGAARD E; DAM H
    Acta Pharmacol Toxicol (Copenh); 1955; 11(1):79-89. PubMed ID: 13248569
    [No Abstract]   [Full Text] [Related]  

  • 16. Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation.
    Kaesler N; Magdeleyns E; Herfs M; Schettgen T; Brandenburg V; Fliser D; Vermeer C; Floege J; Schlieper G; Krüger T
    Kidney Int; 2014 Aug; 86(2):286-93. PubMed ID: 24429407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Study of the Vitamin K Cycle Enzymes in Live Cells.
    Tie JK; Stafford DW
    Methods Enzymol; 2017; 584():349-394. PubMed ID: 28065270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suggested mechanism for the modulation of the activity of NAD(P)H:quinone acceptor oxidoreductase (DT-diaphorase) by menadione: interpretation of the effect of menadione on 5'-[p-(Fluorosulfonyl)benzoyl]adenosine labeling of rat liver NAD(P)H:quinone acceptor oxidoreductase.
    Chen S; Liu XF
    Mol Pharmacol; 1992 Sep; 42(3):545-48. PubMed ID: 1406605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of soluble quinone-reductase in the central nervous system.
    HESS R; PEARSE AG
    Exp Cell Res; 1961 Oct; 25():187-90. PubMed ID: 13906999
    [No Abstract]   [Full Text] [Related]  

  • 20. Assessment of the contribution of NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) to the reduction of vitamin K in wild-type and NQO1-deficient mice.
    Ingram BO; Turbyfill JL; Bledsoe PJ; Jaiswal AK; Stafford DW
    Biochem J; 2013 Nov; 456(1):47-54. PubMed ID: 24015818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.