These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1376766)

  • 1. Diverse K+ channels in primary human T lymphocytes.
    Lee SC; Levy DI; Deutsch C
    J Gen Physiol; 1992 May; 99(5):771-93. PubMed ID: 1376766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin.
    Leonard RJ; Garcia ML; Slaughter RS; Reuben JP
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10094-8. PubMed ID: 1279670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology.
    Grissmer S; Nguyen AN; Cahalan MD
    J Gen Physiol; 1993 Oct; 102(4):601-30. PubMed ID: 7505804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different types of K+ channel current are generated by different levels of a single mRNA.
    Honoré E; Attali B; Romey G; Lesage F; Barhanin J; Lazdunski M
    EMBO J; 1992 Jul; 11(7):2465-71. PubMed ID: 1378391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone.
    Lee SC; Sabath DE; Deutsch C; Prystowsky MB
    J Cell Biol; 1986 Apr; 102(4):1200-8. PubMed ID: 2420805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Ca(2+)-activated K+ channels in excised patches of human T lymphocytes.
    Verheugen JA; van Kleef RG; Oortgiesen M; Vijverberg HP
    Pflugers Arch; 1994 Apr; 426(6):465-71. PubMed ID: 7519766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-gated potassium channels and the control of membrane potential in human platelets.
    Mahaut-Smith MP; Rink TJ; Collins SC; Sage SO
    J Physiol; 1990 Sep; 428():723-35. PubMed ID: 1700113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-gated and Ca(2+)-activated K+ channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium.
    Verheugen JA; Vijverberg HP; Oortgiesen M; Cahalan MD
    J Gen Physiol; 1995 Jun; 105(6):765-94. PubMed ID: 7561743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. Evidence for association with the voltage-gated K+ channel.
    Deutsch C; Price M; Lee S; King VF; Garcia ML
    J Biol Chem; 1991 Feb; 266(6):3668-74. PubMed ID: 1704892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of charybdotoxin block of a voltage-gated K+ channel.
    Goldstein SA; Miller C
    Biophys J; 1993 Oct; 65(4):1613-9. PubMed ID: 7506068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in outward K(+) currents on removal of external Ca(2+) in human atrial myocytes.
    Bertaso F; Hendry BM; Donohoe P; James AF
    Biochem Biophys Res Commun; 2000 Jun; 273(1):10-6. PubMed ID: 10873555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes.
    Sands SB; Lewis RS; Cahalan MD
    J Gen Physiol; 1989 Jun; 93(6):1061-74. PubMed ID: 2475579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation.
    Fraser SP; Grimes JA; Diss JK; Stewart D; Dolly JO; Djamgoz MB
    Pflugers Arch; 2003 Aug; 446(5):559-71. PubMed ID: 12838421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes.
    Attali B; Romey G; Honoré E; Schmid-Alliana A; Mattéi MG; Lesage F; Ricard P; Barhanin J; Lazdunski M
    J Biol Chem; 1992 Apr; 267(12):8650-7. PubMed ID: 1373731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-activated K+ channels in human leukemic T cells.
    Grissmer S; Lewis RS; Cahalan MD
    J Gen Physiol; 1992 Jan; 99(1):63-84. PubMed ID: 1371308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-gated potassium channels in brown fat cells.
    Lucero MT; Pappone PA
    J Gen Physiol; 1989 Mar; 93(3):451-72. PubMed ID: 2467964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the calcium-sensitive voltage-gated delayed rectifier potassium channel in isolated guinea pig hepatocytes.
    Koumi S; Sato R; Horikawa T; Aramaki T; Okumura H
    J Gen Physiol; 1994 Jul; 104(1):147-71. PubMed ID: 7964593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.